Abstract

In this paper, we demonstrate that the master slave (MS) interferometry method can significantly simplify the practice of coherence revival swept source optical coherence tomography (OCT) technique. Previous implementations of the coherence revival technique required considerable resources on dispersion compensation and data resampling. The total tolerance of the MS method to nonlinear tuning, to dispersion in the interferometer and to dispersion due to the laser cavity, makes the MS ideally suited to the practice of coherence revival. In addition, enhanced versatility is allowed by the MS method in displaying shorter axial range images than that determined by the digital sampling of the data. This brings an immediate improvement in the speed of displaying cross-sectional images at high rates without the need of extra hardware such as graphics processing units or field programmable gate arrays. The long axial range of the coherence revival regime is proven with images of the anterior segment of healthy human volunteers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gabor fusion master slave optical coherence tomography

Ramona Cernat, Adrian Bradu, Niels Møller Israelsen, Ole Bang, Sylvain Rivet, Pearse A. Keane, David-Garway Heath, Ranjan Rajendram, and Adrian Podoleanu
Biomed. Opt. Express 8(2) 813-827 (2017)

Complex master-slave for long axial range swept-source optical coherence tomography

Manuel J. Marques, Sylvain Rivet, Adrian Bradu, and Adrian Podoleanu
OSA Continuum 1(4) 1251-1259 (2018)

Master slave en-face OCT/SLO

Adrian Bradu, Konstantin Kapinchev, Frederick Barnes, and Adrian Podoleanu
Biomed. Opt. Express 6(9) 3655-3669 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  2. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [Crossref] [PubMed]
  3. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  4. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021–18033 (2013).
    [Crossref] [PubMed]
  5. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
    [Crossref] [PubMed]
  6. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref] [PubMed]
  7. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [Crossref] [PubMed]
  8. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
    [Crossref] [PubMed]
  9. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
    [Crossref] [PubMed]
  10. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
    [Crossref] [PubMed]
  11. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45(8), 1861–1865 (2006).
    [Crossref] [PubMed]
  12. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
    [Crossref] [PubMed]
  13. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
    [Crossref] [PubMed]
  14. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
    [Crossref] [PubMed]
  15. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
    [Crossref] [PubMed]
  16. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
    [Crossref] [PubMed]
  17. A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express 18(24), 25361–25370 (2010).
    [Crossref] [PubMed]
  18. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3(3), 633–649 (2012).
    [Crossref] [PubMed]
  19. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
    [Crossref] [PubMed]
  20. A. H. Dhalla, K. Shia, and J. A. Izatt, “Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch,” Biomed. Opt. Express 3(12), 3054–3066 (2012).
    [Crossref] [PubMed]
  21. D. Nankivil, A. H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
    [Crossref] [PubMed]
  22. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
    [Crossref] [PubMed]
  23. K. Gaigalas, L. Wang, H.-J. He, and P. DeRose, “Procedures for wavelength calibration and spectral response correction of CCD array spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
    [Crossref]
  24. T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
    [Crossref] [PubMed]
  25. B. Liu, E. Azimi, and M. E. Brezinski, “True logarithmic amplification of frequency clock in SS-OCT for calibration,” Biomed. Opt. Express 2(6), 1769–1777 (2011).
    [Crossref] [PubMed]
  26. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref] [PubMed]
  27. A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, and J. K. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008).
    [Crossref] [PubMed]
  28. T. Hillman and D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express 13(6), 1860–1874 (2005).
    [Crossref] [PubMed]
  29. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [Crossref] [PubMed]
  30. S. Iyer, S. Coen, and F. Vanholsbeeck, “Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system,” Opt. Lett. 34(19), 2903–2905 (2009).
    [Crossref] [PubMed]
  31. N. Lippok, S. Coen, P. Nielsen, and F. Vanholsbeeck, “Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform,” Opt. Express 20(21), 23398–23413 (2012).
    [Crossref] [PubMed]
  32. A. G. Podoleanu and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21(16), 19324–19338 (2013).
    [Crossref] [PubMed]
  33. A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express 23(11), 14148–14161 (2015).
    [Crossref] [PubMed]
  34. A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system,” J. Biomed. Opt. 20(7), 076008 (2015).
    [Crossref] [PubMed]
  35. S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
    [Crossref] [PubMed]
  36. A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “Master slave en-face OCT/SLO,” Biomed. Opt. Express 6(9), 3655–3669 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

2014 (2)

2013 (2)

2012 (5)

2011 (2)

2010 (2)

2009 (4)

2008 (2)

2007 (4)

2006 (2)

2005 (4)

2004 (1)

1997 (1)

Adler, D. C.

Ahsen, O. O.

Akiba, M.

Aoki, G.

Azimi, E.

Bachmann, A.

Barnes, F.

A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system,” J. Biomed. Opt. 20(7), 076008 (2015).
[Crossref] [PubMed]

A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “Master slave en-face OCT/SLO,” Biomed. Opt. Express 6(9), 3655–3669 (2015).
[Crossref] [PubMed]

Barton, J. K.

Biedermann, B. R.

Bonesi, M.

Boschert, P.

Bouma, B.

Bouma, B. E.

Bradu, A.

Brezinski, M. E.

Burgner, C. B.

Bustamante, T.

Cable, A.

Cable, A. E.

Chan, K.-P.

Chen, Z.

Choi, W. J.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

Chong, C.

Coen, S.

Connolly, J. L.

Crawford, M.

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

de Boer, J.

DeRose, P.

K. Gaigalas, L. Wang, H.-J. He, and P. DeRose, “Procedures for wavelength calibration and spectral response correction of CCD array spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref]

Dhalla, A. H.

Dhalla, A.-H.

Drexler, W.

Duker, J. S.

Eigenwillig, C. M.

Endo, T.

Ensher, J.

Farsiu, S.

Feuchter, T.

Fujimoto, J. G.

Gahm, N.

Gaigalas, K.

K. Gaigalas, L. Wang, H.-J. He, and P. DeRose, “Procedures for wavelength calibration and spectral response correction of CCD array spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref]

Grulkowski, I.

He, H.-J.

K. Gaigalas, L. Wang, H.-J. He, and P. DeRose, “Procedures for wavelength calibration and spectral response correction of CCD array spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref]

Hermann, B.

Hillman, T.

Hofer, B.

Hoover, E.

Hornegger, J.

Hu, Z.

Huber, R.

Itoh, M.

Iyer, S.

Izatt, J. A.

Jayaraman, V.

Jiang, J.

John, D. D.

Kapinchev, K.

A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “Master slave en-face OCT/SLO,” Biomed. Opt. Express 6(9), 3655–3669 (2015).
[Crossref] [PubMed]

A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system,” J. Biomed. Opt. 20(7), 076008 (2015).
[Crossref] [PubMed]

Klein, T.

Kraus, M. F.

Kuo, A.

Lasser, T.

Lee, B. K.

Leick, L.

Leitgeb, R.

Leitgeb, R. A.

Lippok, N.

Liu, B.

Liu, J. J.

Lu, C. D.

Madjarova, V. D.

Makita, S.

Maria, M.

Matz, G.

Michaely, R.

Minneman, M. P.

Morosawa, A.

Nankivil, D.

Neagu, L.

Nelson, J. S.

Nielsen, P.

Pan, Y.

Podoleanu, A.

Podoleanu, A. G.

Potsaid, B.

Potsaid, B. M.

Povazay, B.

Považay, B.

Rivet, S.

Robertson, M. E.

Rollins, A. M.

Sakai, T.

Sampson, D.

Sattmann, H.

Sekhar, S. C.

Sheikine, Y.

Shia, K.

Tao, Y. K.

Tearney, G.

Tearney, G. J.

Tsai, T.-H.

Tumlinson, A. R.

Unterhuber, A.

Vanholsbeeck, F.

Wang, H.

Wang, L.

K. Gaigalas, L. Wang, H.-J. He, and P. DeRose, “Procedures for wavelength calibration and spectral response correction of CCD array spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref]

Wang, R. K.

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

Wieser, W.

Winkler, A. M.

Yasuno, Y.

Yatagai, T.

Yun, S.

Zabihian, B.

Zhang, J.

Zhao, M.

Zhou, C.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

J. Biomed. Opt. (2)

A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system,” J. Biomed. Opt. 20(7), 076008 (2015).
[Crossref] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Res. Natl. Inst. Stand. Technol. (1)

K. Gaigalas, L. Wang, H.-J. He, and P. DeRose, “Procedures for wavelength calibration and spectral response correction of CCD array spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref]

Opt. Express (15)

T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
[Crossref] [PubMed]

T. Hillman and D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express 13(6), 1860–1874 (2005).
[Crossref] [PubMed]

S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
[Crossref] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref] [PubMed]

N. Lippok, S. Coen, P. Nielsen, and F. Vanholsbeeck, “Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform,” Opt. Express 20(21), 23398–23413 (2012).
[Crossref] [PubMed]

A. G. Podoleanu and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21(16), 19324–19338 (2013).
[Crossref] [PubMed]

A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express 23(11), 14148–14161 (2015).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
[Crossref] [PubMed]

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021–18033 (2013).
[Crossref] [PubMed]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[Crossref] [PubMed]

A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express 18(24), 25361–25370 (2010).
[Crossref] [PubMed]

Opt. Lett. (9)

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[Crossref] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
[Crossref] [PubMed]

H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
[Crossref] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
[Crossref] [PubMed]

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
[Crossref] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[Crossref] [PubMed]

S. Iyer, S. Coen, and F. Vanholsbeeck, “Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system,” Opt. Lett. 34(19), 2903–2905 (2009).
[Crossref] [PubMed]

D. Nankivil, A. H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
[Crossref] [PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (2433 KB)      MS-OCT Bascan at 10 Hz
» Visualization 2: AVI (14922 KB)      MS-OCT Bascan at 20 Hz

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Procedure steps required to produce an A-scan profile using the FT based OCT (top) and procedures steps to produce a single reflectivity value using the CMS method (bottom). The CMS-OCT method requires a single processing step after data acquisition while the conventional FT-OCT method is more time demanding, as three sequential steps are required.
Fig. 2
Fig. 2 Schematic diagram of the SS-OCT imaging system used in the present study. SS: swept source; DC1, DC2: directional couplers; BPD: balance photodetector; D: digitizer; MO1-3: microscope objectives; TS: translation stage; M1-2: flat mirrors; SX: transversal scanner; SL: scanning lens.
Fig. 3
Fig. 3 Sensitivity fall-off measurements vs axial position δz, measured from Z+1 = 11.5 cm,, (colored) and the confocal profile (black).
Fig. 4
Fig. 4 Time to produce a cross-sectional image (B-scan) using both methods, FFT and CMS vs the number of sampling points used to digitize each channeled spectrum.
Fig. 5
Fig. 5 Cross-sectional images of the ocular anterior segment of a healthy volunteer for 2 axial positions of the eye. Both images consist of Nx = 1000 lateral pixels and Nz = 2048 axial pixels. CE: corneal epithelium, BL: Bowman’s layer, CS: corneal stroma, CEN: corneal endothelium, IS: iris stroma, IPE: iris pigment epithelium, CL: crystalline lens.
Fig. 6
Fig. 6 Cross-sectional image of the ocular anterior segment of a healthy volunteer extracted from Visualization 1. The image consists of Nx = 1000 pixels laterally and Nz = 2048 pixels axially. CE: corneal epithelium, BL: Bowman’s layer, CS: corneal stroma, CEN: corneal endothelium, IS: iris stroma, IPE: iris pigment epithelium, CL: crystalline lens.
Fig. 7
Fig. 7 Cross-sectional images of the ocular anterior segment of a healthy volunteer extracted from Visualization 2. The image consists of P = 1000 pixels laterally and R = 1024 pixels axially. CE: corneal epithelium, BL: Bowman’s layer, CS: corneal stroma, CEN: corneal endothelium, IS: iris stroma, IPE: iris pigment epithelium, CL: crystalline lens.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A ( z ) c h i r p e d = + C S ( φ k , z ) e j k z d k
φ k , z = g k z + h k
A ( z ) n o n c h i r p e d = + C S n o n c h i r p e d ( k ) e j k z d k = F F T [ C S n o n c h i r p e d ( k ) ]
A ( z ) n o n c h i r p e d = + C S ( φ k , z ) g k e j φ k , z d k = + C S ( φ k , z ) M ˜ ( φ k , z ) d k
B F F T = [ F F T ( C S 1 non-chirped ) F F T ( C S 2 non-chirped ) F F T ( C S N x non-chirped ) ]
A z = k = 1 N k C S ( φ k , z ) M ˜ ( k , z ) ,
B C M S I = C S × M ˜
C S = [ C S 11 C S 12 C S 1 N x C S 21 C S 22 C S 2 N x C S N k 1 C S N k 2 C S N k N x ] = [ C S 1 C S 2 C S N x ]
M ˜ = [ M ˜ 11 M ˜ 12 M ˜ 1 N k M ˜ 21 M ˜ 22 M ˜ 2 N k M ˜ N z 1 M ˜ N z 2 M ˜ N z N k ] = [ M ˜ 1 M ˜ 2 M ˜ N z ]

Metrics