Abstract

A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recovering higher dimensional image data using multiplexed structured illumination

Siyuan Dong, Kaikai Guo, Shaowei Jiang, and Guoan Zheng
Opt. Express 23(23) 30393-30398 (2015)

High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography

Siyuan Dong, Pariksheet Nanda, Radhika Shiradkar, Kaikai Guo, and Guoan Zheng
Opt. Express 22(17) 20856-20870 (2014)

Three-dimensional live multi-label light-sheet imaging with synchronous excitation-multiplexed structured illumination

Dongli Xu, Weibin Zhou, and Leilei Peng
Opt. Express 25(25) 31159-31173 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Maiden, M. J. Humphry, and J. M. Rodenburg, “Ptychographic transmission microscopy in three dimensions using a multi-slice approach,” J. Opt. Soc. Am. A 29(8), 1606–1614 (2012).
    [Crossref] [PubMed]
  2. S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
    [Crossref] [PubMed]
  3. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
    [Crossref] [PubMed]
  4. D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
    [Crossref] [PubMed]
  5. S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
    [Crossref] [PubMed]
  6. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
    [Crossref] [PubMed]
  7. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  8. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
    [Crossref] [PubMed]
  9. A. F. Coskun, T.-W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
    [Crossref] [PubMed]
  10. S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. Express 21(12), 14555–14565 (2013).
    [Crossref] [PubMed]
  11. S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
    [Crossref] [PubMed]
  12. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
    [Crossref]
  13. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  14. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  15. K. Guo, S. Dong, and G. Zheng, “Fourier Ptychography for Brightfield, Phase, Darkfield, Reflective, Multi-Slice, and Fluorescence Imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 1–12 (2016).
    [Crossref]
  16. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
    [Crossref] [PubMed]
  17. N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, “Studying different illumination patterns for resolution improvement in fluorescence microscopy,” Opt. Express 23(24), 31367–31383 (2015).
    [Crossref] [PubMed]

2016 (1)

K. Guo, S. Dong, and G. Zheng, “Fourier Ptychography for Brightfield, Phase, Darkfield, Reflective, Multi-Slice, and Fluorescence Imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 1–12 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (3)

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. Express 21(12), 14555–14565 (2013).
[Crossref] [PubMed]

2012 (3)

A. M. Maiden, M. J. Humphry, and J. M. Rodenburg, “Ptychographic transmission microscopy in three dimensions using a multi-slice approach,” J. Opt. Soc. Am. A 29(8), 1606–1614 (2012).
[Crossref] [PubMed]

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

2010 (3)

2008 (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Aegerter, C. M.

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Arpali, C.

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

Arpali, S. A.

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Batey, D. J.

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Chakrova, N.

Chiang, H.-H.

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

Claus, D.

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Coskun, A. F.

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

A. F. Coskun, T.-W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
[Crossref] [PubMed]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dong, S.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Erath, J.

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Guo, K.

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Han, C.

Heintzmann, R.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Humphry, M. J.

Jiang, S.

Kelly, K. E.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Maiden, A. M.

Menzel, A.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Nanda, P.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Ozcan, A.

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

A. F. Coskun, T.-W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
[Crossref] [PubMed]

Pang, S.

Rieger, B.

Rodenburg, J. M.

Rodriguez, A.

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Sencan, I.

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Shiradkar, R.

Stallinga, S.

Su, T.-W.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Thibault, P.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Vellekoop, I. M.

Yang, C.

Zheng, G.

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

K. Guo, S. Dong, and G. Zheng, “Fourier Ptychography for Brightfield, Phase, Darkfield, Reflective, Multi-Slice, and Fluorescence Imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 1–12 (2016).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lab Chip (2)

A. F. Coskun, T.-W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[Crossref] [PubMed]

S. A. Arpali, C. Arpali, A. F. Coskun, H.-H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12(23), 4968–4971 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Nature (1)

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Ultramicroscopy (1)

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (257 KB)      Visualization 1
» Visualization 2: MP4 (1869 KB)      Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation of the multilayer single-pixel imaging scheme. (a) The input two-layer object. (b) The recovered results using different number of illumination patterns. (c) The recovered results with different levels of additive noises. MSE is used as a metric to quantify the results in (b7) and (c5).

Fig. 2
Fig. 2

(Visualization 1) Imaging performance of the multilayer imaging scheme with respect to different numbers of object layers and illumination patterns. MSE is used to quantify the imaging performance with 1 layer (a1), 2 layers (a2), and 10 layers (a3). (b) 10-layer single-pixel recovery of a 3D neuron cell (visualized using ImageJ 3D viewer).

Fig. 3
Fig. 3

Achievable resolution of the reported imaging scheme. (a) The input resolution target. (b) and (c): speckles with two different feature sizes and their corresponding recoveries. (d) MSE is used to quantify the imaging performance for the cases of two different speckle sizes.

Fig. 4
Fig. 4

Multilayer single-pixel imaging scheme using a lens setup. (a) The experimental setup. The fluorescence imaging results of sample 1 (b) and sample 2 (c).

Fig. 5
Fig. 5

(Visualization 2) Multilayer single-pixel imaging scheme using a lensless setup. (a) The experimental setup. We scanned the mask to 2000 different spatial positons and captured corresponding 1D fluorescence signal for recovery. The recovered images (b) and ground truth (c) of the 4 sample layers. (d) 3D visualization using ImageJ 3D Viewer.

Fig. 6
Fig. 6

Spectrum-multiplexed single-pixel imaging scheme using a lens setup. (a) The experimental setup. (b) The recovered images of different color channels using the reported scheme. (c) The ground-truth images of the color object.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I n = x,y,m Objec t layer_m (x,y) P mn (x,y) ,
( I pm updated (x,y) )=( I pm (x,y) )( 1δ(x,y) )+ I tm updated δ(x,y),
Objec t layer_m updated (x,y)=Objec t layer_m (x,y)+ P mn (x,y) (max( P mn (x,y))) 2 ( I pm updated (x,y) I pm (x,y))

Metrics