Abstract

In the present work, we report a dry-based application technique of Au/SiO2 clouds in powder for rapid ex vivo adenocarcinoma diagnosis through surface-enhanced Raman scattering (SERS); using low laser power and an integration time of one second. Several characteristic Raman peaks frequently used for the diagnosis of breast adenocarcinoma in the range of the amide III are successfully enhanced by breading the tissue with Au/SiO2 powder. The SERS activity of these Au/SiO2 powders is attributed to their rapid rehydration upon contact with the wet tissues, which promotes the formation of gold nanoparticle aggregates. The propensity of the Au/SiO2 cloud structures to adsorb biomolecules in the vicinity of the gold nanoparticle clusters promotes the necessary conditions for SERS detection. In addition, electron microscopy, together with elemental analysis, have been used to confirm the structure of the new Au/SiO2 cloud material and to investigate its distribution in breast tissues.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Raman spectroscopy: techniques and applications in the life sciences

Dustin W. Shipp, Faris Sinjab, and Ioan Notingher
Adv. Opt. Photon. 9(2) 315-428 (2017)

Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen
Opt. Express 19(14) 13565-13577 (2011)

Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS

Zhen Li, Shouzhen Jiang, Yanyan Huo, Mei Liu, Cheng Yang, Chao Zhang, Xiaoyun Liu, Yingqing Sheng, Chonghui Li, and Baoyuan Man
Opt. Express 24(23) 26097-26108 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Manoharan, Y. Wang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(2), 215–249 (1996).
    [Crossref]
  2. Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer 120(12), 2527–2537 (2007).
    [Crossref] [PubMed]
  3. J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
    [Crossref] [PubMed]
  4. A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
    [Crossref] [PubMed]
  5. G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
    [Crossref] [PubMed]
  6. G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
    [Crossref] [PubMed]
  7. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).
  8. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line (CRC Press, 2001).
  9. A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
    [Crossref]
  10. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
    [Crossref] [PubMed]
  11. L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
    [Crossref] [PubMed]
  12. A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).
  13. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
    [Crossref] [PubMed]
  14. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman scattering: physics and applications. Vol. 103 (Springer Science & Business Media, 2006).
  15. X.-M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
    [Crossref] [PubMed]
  16. L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
    [Crossref] [PubMed]
  17. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
    [Crossref] [PubMed]
  18. S. C. Robles and E. Galanis, “Breast cancer in Latin America and the Caribbean,” Rev. Panam. Salud Publica 11(3), 178–185 (2002).
    [Crossref] [PubMed]
  19. K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
    [Crossref]
  20. J. Turkevich, G. Garton, and P. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
    [Crossref]
  21. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [Crossref]
  22. X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
    [Crossref] [PubMed]
  23. M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
    [Crossref] [PubMed]
  24. M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
    [Crossref]
  25. Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
    [PubMed]
  26. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
    [Crossref]
  27. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
    [Crossref]
  28. J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
    [Crossref] [PubMed]
  29. W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
    [Crossref] [PubMed]
  30. N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Anal. Chem. 80(17), 6620–6625 (2008).
    [Crossref] [PubMed]
  31. H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
    [Crossref] [PubMed]
  32. V. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chem. Mater. 15(5), 1111–1118 (2003).
    [Crossref]
  33. N. I. Afanasyeva, S. F. Kolyakov, V. G. Artioushenko, V. V. Sokolov, and G. A. Frank, “Minimally invasive and ex-vivo diagnostics of breast cancer tissues by fiber optic evanescent-wave fourier transform ir (few-ftir) spectroscopy,” in BiOS'98 International Biomedical Optics Symposium. International Society for Optics and Photonics (1998).
    [Crossref]
  34. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
    [Crossref] [PubMed]
  35. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
    [Crossref]
  36. M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
    [Crossref]
  37. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  38. T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).
  39. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
    [Crossref] [PubMed]
  40. J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
    [Crossref]
  41. T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
    [Crossref] [PubMed]
  42. H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
    [Crossref] [PubMed]
  43. Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
    [Crossref]
  44. A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme,” Langmuir 20(16), 6800–6807 (2004).
    [Crossref] [PubMed]

2015 (2)

L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
[Crossref] [PubMed]

A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
[Crossref]

2014 (2)

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

2013 (2)

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

2012 (2)

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

2011 (2)

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

2010 (3)

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
[Crossref] [PubMed]

2008 (5)

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Anal. Chem. 80(17), 6620–6625 (2008).
[Crossref] [PubMed]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

X.-M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[Crossref]

2007 (2)

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
[Crossref] [PubMed]

Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer 120(12), 2527–2537 (2007).
[Crossref] [PubMed]

2006 (3)

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

2005 (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

2004 (3)

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme,” Langmuir 20(16), 6800–6807 (2004).
[Crossref] [PubMed]

2003 (4)

V. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chem. Mater. 15(5), 1111–1118 (2003).
[Crossref]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[Crossref]

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (3)

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

S. C. Robles and E. Galanis, “Breast cancer in Latin America and the Caribbean,” Rev. Panam. Salud Publica 11(3), 178–185 (2002).
[Crossref] [PubMed]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

2001 (1)

T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
[Crossref] [PubMed]

1998 (2)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
[Crossref] [PubMed]

1996 (1)

R. Manoharan, Y. Wang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(2), 215–249 (1996).
[Crossref]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

1954 (1)

J. Turkevich, G. Garton, and P. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

Adams, S. A.

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Ali, H. R.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Armstrong, L. S.

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

Aro, H. T.

T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
[Crossref] [PubMed]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Aveyard, J.

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
[Crossref] [PubMed]

Babar, S. A.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Badizadegan, K.

Bahena, D.

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

Ballot, H.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

Basham, J. I.

M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
[Crossref] [PubMed]

Blows, F. M.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Boone, C.

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[Crossref]

Boye, D. M.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Bray, F.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Brenton, J. D.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Brinker, C. J.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[Crossref]

Caldas, C.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Calderon-Moreno, J.

V. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chem. Mater. 15(5), 1111–1118 (2003).
[Crossref]

Ceja-Fdez, A.

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

Center, M. M.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Chando, P.

M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
[Crossref] [PubMed]

Chen, C.-H.

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

Chen, D.

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

Chen, H.-C.

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

Chen, L.

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

Chen, L.-Y.

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

Chen, Q.-Y.

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

Condit, C.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

Dawson, S. J.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

De la Rosa, E.

L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
[Crossref] [PubMed]

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Dordick, J. S.

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme,” Langmuir 20(16), 6800–6807 (2004).
[Crossref] [PubMed]

Eah, S.-K.

M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
[Crossref] [PubMed]

Emelianov, S.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

English, J.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Fan, H.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Fanburg-Smith, J. C.

J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
[Crossref] [PubMed]

Fante, R.

J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
[Crossref] [PubMed]

Feld, M. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

R. Manoharan, Y. Wang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(2), 215–249 (1996).
[Crossref]

Feldman, M. D.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Feng, X.

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

Ferlay, J.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Fernig, D. G.

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
[Crossref] [PubMed]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

Forman, D.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Galanis, E.

S. C. Robles and E. Galanis, “Breast cancer in Latin America and the Caribbean,” Rev. Panam. Salud Publica 11(3), 178–185 (2002).
[Crossref] [PubMed]

Gao, T.

T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
[Crossref] [PubMed]

Garton, G.

J. Turkevich, G. Garton, and P. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

Gedanken, A.

V. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chem. Mater. 15(5), 1111–1118 (2003).
[Crossref]

Haiss, W.

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
[Crossref] [PubMed]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

Halas, N.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Harisinghani, M. G.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

He, J.

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

He, X.

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

Hossain, M.

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

Huang, G.

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

Huang, X.

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Hunt, J. D.

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

Irwin, M.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Jacobs, I. J.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Jemal, A.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Jeyarajah, A. R.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[Crossref]

José-Yacamán, M.

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

Kaneko, T.

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

Kavner, A.

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Khlebtsov, N. G.

N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Anal. Chem. 80(17), 6620–6625 (2008).
[Crossref] [PubMed]

Kim, J.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Kimling, J.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

Kindblom, L.-G.

J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
[Crossref] [PubMed]

Kitahama, Y.

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

Kotaidis, V.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

Lam, S.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Liu, Y.

Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer 120(12), 2527–2537 (2007).
[Crossref] [PubMed]

Liu, Y.-C.

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

López, G. P.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Lopez-Luke, T.

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

López-Luke, T.

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

Lui, H.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Mahler-Araujo, B.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Maier, M.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

Maillard, M.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[Crossref]

Malloy, K. J.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Manning, C. E.

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

Manoharan, R.

R. Manoharan, Y. Wang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(2), 215–249 (1996).
[Crossref]

Martin, M. N.

M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
[Crossref] [PubMed]

McLean, D. I.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

McWilliams, A.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Meis-Kindblom, J. M.

J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
[Crossref] [PubMed]

Milner, T. E.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Miyoshi, H.

Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer 120(12), 2527–2537 (2007).
[Crossref] [PubMed]

Morris, L.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Motz, J. T.

Movasaghi, Z.

A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
[Crossref]

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[Crossref]

Myles, J.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

Nakamura, M.

Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer 120(12), 2527–2537 (2007).
[Crossref] [PubMed]

Nie, S. M.

X.-M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Oh, J.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Okenve, B.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Oliva, J.

L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
[Crossref] [PubMed]

Oram, D. H.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Ozaki, Y.

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

Pérez-Mayen, L.

L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
[Crossref] [PubMed]

Pharoah, P. D.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Plascencia-Villa, G.

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

Plech, A.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

Pol, V.

V. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chem. Mater. 15(5), 1111–1118 (2003).
[Crossref]

Ponce, A.

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

Provenzano, E.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Qian, X.-M.

X.-M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Rehman, I.

A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
[Crossref]

Rehman, S.

A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
[Crossref]

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[Crossref]

Reznek, R. H.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Robles, S. C.

S. C. Robles and E. Galanis, “Breast cancer in Latin America and the Caribbean,” Rev. Panam. Salud Publica 11(3), 178–185 (2002).
[Crossref] [PubMed]

Rockall, A. G.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Rodríguez, A. R.

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schauble, E. A.

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
[Crossref]

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

Shepherd, J. H.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Siegel, R. W.

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme,” Langmuir 20(16), 6800–6807 (2004).
[Crossref] [PubMed]

Sigmon, T.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Singh, N.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Snyder, D.

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

Sohaib, S. A.

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

Starr, C. R.

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

Stevenson, P.

J. Turkevich, G. Garton, and P. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Talari, A. C. S.

A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
[Crossref]

Tang, F.

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

Teng, X.

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

Thanh, N. T.

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
[Crossref] [PubMed]

Torres-Castro, A.

L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
[Crossref] [PubMed]

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Turkevich, J.

J. Turkevich, G. Garton, and P. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

ur Rehman, D. I.

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[Crossref]

Vertegel, A. A.

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme,” Langmuir 20(16), 6800–6807 (2004).
[Crossref] [PubMed]

Vuorio, E.

T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
[Crossref] [PubMed]

Walton, N. A.

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

Wang, Y.

R. Manoharan, Y. Wang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(2), 215–249 (1996).
[Crossref]

Ward, E.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Wheeler, D. A.

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Wu, Y.

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

Xu, H.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Yang, K.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Yang, K.-H.

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

Ylänen, H.

T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
[Crossref] [PubMed]

Yoshizawa, N.

Zavodivker, L. S.

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Zeng, H.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Zhang, J. Z.

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Zhang, M.

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

Zhang, Y.

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Acc. Chem. Res. (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

Am. J. Surg. Pathol. (1)

J. C. Fanburg-Smith, J. M. Meis-Kindblom, R. Fante, and L.-G. Kindblom, “Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation,” Am. J. Surg. Pathol. 22(7), 779–794 (1998).
[Crossref] [PubMed]

Anal. Chem. (2)

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-vis spectra,” Anal. Chem. 79(11), 4215–4221 (2007).
[Crossref] [PubMed]

N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Anal. Chem. 80(17), 6620–6625 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (1)

L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, “Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering,” Analyst (Lond.) 139(8), 1929–1937 (2014).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. Hossain, Y. Kitahama, G. Huang, T. Kaneko, and Y. Ozaki, “SPR and SERS characteristics of gold nanoaggregates withádifferent morphologies,” Appl. Phys. B 93(1), 165–170 (2008).
[Crossref]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (2)

A. C. S. Talari, Z. Movasaghi, S. Rehman, and I. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 50(1), 46–111 (2015).
[Crossref]

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[Crossref]

Biomaterials (2)

T. Gao, H. T. Aro, H. Ylänen, and E. Vuorio, “Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro,” Biomaterials 22(12), 1475–1483 (2001).
[Crossref] [PubMed]

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials 31(3), 438–448 (2010).
[Crossref] [PubMed]

Biomed. Spectrosc. Imaging (1)

T. Lopez-Luke, D. A. Wheeler, E. de la Rosa, A. Torres-Castro, S. A. Adams, L. S. Zavodivker, and J. Z. Zhang, “Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures,” Biomed. Spectrosc. Imaging 1(4), 275–291 (2012).

Br. J. Cancer (1)

H. R. Ali, M. Irwin, L. Morris, S. J. Dawson, F. M. Blows, E. Provenzano, B. Mahler-Araujo, P. D. Pharoah, N. A. Walton, J. D. Brenton, and C. Caldas, “Astronomical algorithms for automated analysis of tissue protein expression in breast cancer,” Br. J. Cancer 108(3), 602–612 (2013).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[Crossref] [PubMed]

Chem. Geol. (1)

J. D. Hunt, A. Kavner, E. A. Schauble, D. Snyder, and C. E. Manning, “Polymerization of aqueous silica in H 2 O–K 2 O solutions at 25–200° C and 1bar to 20kbar,” Chem. Geol. 283(3-4), 161–170 (2011).
[Crossref]

Chem. Mater. (1)

V. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chem. Mater. 15(5), 1111–1118 (2003).
[Crossref]

Chem. Phys. Lett. (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Chem. Soc. Rev. (2)

X.-M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Int. J. Cancer (1)

Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer 120(12), 2527–2537 (2007).
[Crossref] [PubMed]

Int. J. Oncol. (1)

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003).
[PubMed]

Integr Biol (Camb) (1)

G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, A. Ponce, and M. José-Yacamán, “Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques,” Integr Biol (Camb) 4(11), 1358–1366 (2012).
[Crossref] [PubMed]

J. Clin. Oncol. (1)

A. G. Rockall, S. A. Sohaib, M. G. Harisinghani, S. A. Babar, N. Singh, A. R. Jeyarajah, D. H. Oram, I. J. Jacobs, J. H. Shepherd, and R. H. Reznek, “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer,” J. Clin. Oncol. 23(12), 2813–2821 (2004).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

J. Colloid Sci. (1)

J. Turkevich, G. Garton, and P. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

J. Mater. Chem. (1)

M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation,” J. Mater. Chem. 20(28), 5835–5842 (2010).
[Crossref]

J. Phys. Chem. B (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[Crossref]

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33(7), 552–563 (2002).
[Crossref]

Langmuir (2)

M. N. Martin, J. I. Basham, P. Chando, and S.-K. Eah, “Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly,” Langmuir 26(10), 7410–7417 (2010).
[Crossref] [PubMed]

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme,” Langmuir 20(16), 6800–6807 (2004).
[Crossref] [PubMed]

Metallomics (1)

G. Plascencia-Villa, D. Bahena, A. R. Rodríguez, A. Ponce, and M. José-Yacamán, “Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages,” Metallomics 5(3), 242–250 (2013).
[Crossref] [PubMed]

Nanoscale (1)

L. Pérez-Mayen, J. Oliva, A. Torres-Castro, and E. De la Rosa, “SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes,” Nanoscale 7(22), 10249–10258 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Rev. Panam. Salud Publica (1)

S. C. Robles and E. Galanis, “Breast cancer in Latin America and the Caribbean,” Rev. Panam. Salud Publica 11(3), 178–185 (2002).
[Crossref] [PubMed]

RSC Advances (1)

A. Ceja-Fdez, T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang, and E. De la Rosa, “Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium,” RSC Advances 4(103), 59233–59241 (2014).

Science (1)

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304(5670), 567–571 (2004).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

R. Manoharan, Y. Wang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(2), 215–249 (1996).
[Crossref]

Other (4)

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman scattering: physics and applications. Vol. 103 (Springer Science & Business Media, 2006).

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line (CRC Press, 2001).

N. I. Afanasyeva, S. F. Kolyakov, V. G. Artioushenko, V. V. Sokolov, and G. A. Frank, “Minimally invasive and ex-vivo diagnostics of breast cancer tissues by fiber optic evanescent-wave fourier transform ir (few-ftir) spectroscopy,” in BiOS'98 International Biomedical Optics Symposium. International Society for Optics and Photonics (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

UV-Vis absorption spectroscopy. (a) Au/SiO2 material powder. (b) Colloidal AuNP seeds used to prepare Au/SiO2. (c) Naked AuNPs. (d) SiO2 nanoparticles.

Fig. 2
Fig. 2

Electron microscopy micrographs. (a) SEM image of SiO2 nanoparticles with an average size of 400 nm and (b) BF-STEM imaging of gold nanoparticles, with average diameter of 20 nm embedded into an Au/SiO2 cloud. (c) BF-STEM imaging of naked AuNPs.

Fig. 3
Fig. 3

(a) SEM image of an Au/SiO2 cloud surrounded by SiO2 NPs and its elemental EDS mapping: (b) oxygen (red), (c) silicon (blue) and (d) gold (purple). Scale bar 500 nm.

Fig. 4
Fig. 4

Representative XRD patterns of (a) the Au/SiO2 clouds mixed with SiO2 spheres in a proportion of 1:15, (b) the Au/SiO2 clouds mixed with SiO2 spheres in a proportion of 1:40 and (c) SiO2. The patterns (a) and (b) can be indexed as a gold FCC structure [31].

Fig. 5
Fig. 5

EDS analysis showing the distribution of gold in breast glandular tissue inoculated with (a) Au/SiO2 powder (shown in green) and (b) naked AuNPs (shown in yellow). The scale bar is 2.5 µm.

Fig. 6
Fig. 6

Raman signals of (A): (a) Au/SiO2 powder and (b) AuNPs respectively. (c) Raman signal of normal breast glandular tissue. SERS spectra obtained from normal tissue (d) incubated with AuNPs, (e) breaded with Au/SiO2 powder. (B): (a) and (b) show the Raman signals of Au/SiO2 powder and AuNPs respectively. (c) Raman signal of glandular breast adenocarcinoma tissue. SERS spectra obtained from adenocarcinoma tissue (d) incubated with AuNPs, (e) breaded with Au/SiO2 powder. All spectra were acquired following an excitation at 785 nm.

Fig. 7
Fig. 7

(a) Representative SERS spectra obtained from normal tissue breaded with Au/SiO2 powder and (b) SERS spectra obtained from adenocarcinoma tissue breaded with Au/SiO2 powder. All spectra were acquired following an excitation at 785 nm.

Fig. 8
Fig. 8

(a) Plot of the integrated Raman signal vs. different regions of the spectrum in the presence of naked AuNPs and Au/SiO2 powder. (b) Plot of enhancement factor in the Raman signal vs. different regions of the spectrum in the presence of Au/SiO2 powder and AuNPs. Error bars show the standard deviations. Each graph represents the average from 50 SERS spectra.

Metrics