Abstract

Simultaneous imaging of different cell types and structures in the mouse central nervous system (CNS) by intravital two-photon microscopy requires the characterization of fluorophores and advances in approaches to visualize them. We describe the use of a two-photon infrared illumination generated by an optical parametric oscillator (OPO) on quantum-dots 655 (QD655) nanocrystals to improve resolution of the vasculature deeper in the mouse brain both in healthy and pathological conditions. Moreover, QD655 signal can be unmixed from the DsRed2, CFP, EGFP and EYFP fluorescent proteins, which enhances the panel of multi-parametric correlative investigations both in the cortex and the spinal cord.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging

Yalun Wang, Rongrong Hu, Wang Xi, Fuhong Cai, Shaowei Wang, Zhenfeng Zhu, Rongpan Bai, and Jun Qian
Biomed. Opt. Express 6(10) 3783-3794 (2015)

Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier

Patrick Theer, Mazahir T. Hasan, and Winfried Denk
Opt. Lett. 28(12) 1022-1024 (2003)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. S. W. Perry, R. M. Burke, and E. B. Brown, “Two-photon and second harmonic microscopy in clinical and translational cancer research,” Ann. Biomed. Eng. 40(2), 277–291 (2012).
    [Crossref] [PubMed]
  3. K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
    [Crossref] [PubMed]
  4. C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
    [Crossref] [PubMed]
  5. A. Ustione and D. W. Piston, “A simple introduction to multiphoton microscopy,” J. Microsc. 243(3), 221–226 (2011).
    [Crossref] [PubMed]
  6. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  7. L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
    [Crossref] [PubMed]
  8. F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
    [Crossref] [PubMed]
  9. C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
    [Crossref] [PubMed]
  10. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
    [Crossref] [PubMed]
  11. C. Ricard and F. C. Debarbieux, “Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment,” Front. Cell. Neurosci. 8, 57 (2014).
    [Crossref] [PubMed]
  12. P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
    [Crossref] [PubMed]
  13. P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
    [Crossref] [PubMed]
  14. O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
    [Crossref] [PubMed]
  15. K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
    [Crossref] [PubMed]
  16. C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
    [Crossref] [PubMed]
  17. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
    [Crossref] [PubMed]
  18. N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
    [PubMed]
  19. K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
    [Crossref] [PubMed]
  20. C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
    [Crossref] [PubMed]
  21. K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
    [Crossref] [PubMed]
  22. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  23. L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
    [Crossref]
  24. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [Crossref] [PubMed]
  25. H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
    [Crossref] [PubMed]
  26. K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
    [Crossref] [PubMed]
  27. A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
    [Crossref] [PubMed]
  28. S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
    [Crossref] [PubMed]
  29. J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
    [Crossref] [PubMed]
  30. S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
    [Crossref] [PubMed]

2015 (2)

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

2014 (3)

C. Ricard and F. C. Debarbieux, “Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment,” Front. Cell. Neurosci. 8, 57 (2014).
[Crossref] [PubMed]

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
[Crossref] [PubMed]

2013 (5)

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
[Crossref] [PubMed]

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

2012 (3)

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

S. W. Perry, R. M. Burke, and E. B. Brown, “Two-photon and second harmonic microscopy in clinical and translational cancer research,” Ann. Biomed. Eng. 40(2), 277–291 (2012).
[Crossref] [PubMed]

2011 (5)

A. Ustione and D. W. Piston, “A simple introduction to multiphoton microscopy,” J. Microsc. 243(3), 221–226 (2011).
[Crossref] [PubMed]

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
[Crossref] [PubMed]

2010 (2)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

2009 (2)

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

2008 (2)

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

2005 (2)

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2000 (3)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Agrawal, A.

S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
[Crossref] [PubMed]

Amoureux, M. C.

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

Andalman, A. S.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Ando, R.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Balamurugan, S.

S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
[Crossref] [PubMed]

Barar, J.

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Beaurepaire, E.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Becher, B.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Bechmann, I.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Bernstein, H.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Bernstein, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Brandt, A. U.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Brandt, C.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Brouard, D.

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

Brown, E. B.

S. W. Perry, R. M. Burke, and E. B. Brown, “Two-photon and second harmonic microscopy in clinical and translational cancer research,” Ann. Biomed. Eng. 40(2), 277–291 (2012).
[Crossref] [PubMed]

Brucker, D.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

Bulloch, K.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Bunse, J.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Burgold, S.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Burke, R. M.

S. W. Perry, R. M. Burke, and E. B. Brown, “Two-photon and second harmonic microscopy in clinical and translational cancer research,” Ann. Biomed. Eng. 40(2), 277–291 (2012).
[Crossref] [PubMed]

Calon, F.

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

Chantal, R.

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

Chung, K.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Coles, J. A.

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

d’Esposito, A.

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

Davidson, T. J.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Debarbieux, F.

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

Debarbieux, F. C.

C. Ricard and F. C. Debarbieux, “Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment,” Front. Cell. Neurosci. 8, 57 (2014).
[Crossref] [PubMed]

Débarre, D.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Deisseroth, K.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Denisin, A. K.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Desjardins, A.

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

Dupin, L.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Elleaume, H.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Emond, V.

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

Farion, R.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Faust, N.

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

Feng, G.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Fenrich, K. K.

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

Fernández, M.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Fuhrmann, M.

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Fukami, K.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Gal-Toth, J.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Gastaldo, J.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Ghaemi, B.

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Gottfried-Blackmore, A.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Gradinaru, V.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Graf, T.

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

Grau, S.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

Greter, M.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Grosenick, L.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Hama, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Hauser, A. E.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Heck, S.

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Heppner, F.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Herms, J.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Herz, J.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Hocine, M.

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

Immig, K.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Ji, R.

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

Johari-Ahar, M.

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Kalyanasundaram, S.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Kato, Y.

S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
[Crossref] [PubMed]

Kaunzner, U. W.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Kawano, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Keller-Peck, C.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Kelly, L. M.

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

Kienast, Y.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Kim, S.-Y.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Kretzschmar, H.

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Krüger, M.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Kurokawa, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Labroille, G.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Laman, J. D.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Leuenberger, T.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Li, X.

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

Lichtman, J. W.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Lindquist, R.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Liu, K.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Livet, J.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Loulier, K.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Lythgoe, M. F.

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

Mahou, P.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Mashinchian, O.

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Matho, K. S.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Mattis, J.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

McEwen, B. S.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Mellor, R. H.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Miller, M. M.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Milner, T. A.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Mirzabekov, J. J.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Mitteregger, G.

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Miyawaki, A.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Morin, X.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Nerbonne, J. M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Nguyen, Q. T.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Niesner, R. A.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Nikitichev, D.

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

Noda, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nussenzweig, M. C.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Omidi, Y.

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Pak, S.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Parent, M.

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

Paris-Robidas, S.

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

Perry, S. W.

S. W. Perry, R. M. Burke, and E. B. Brown, “Two-photon and second harmonic microscopy in clinical and translational cancer research,” Ann. Biomed. Eng. 40(2), 277–291 (2012).
[Crossref] [PubMed]

Ping Lau, S.

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

Piston, D. W.

A. Ustione and D. W. Piston, “A simple introduction to multiphoton microscopy,” J. Microsc. 243(3), 221–226 (2011).
[Crossref] [PubMed]

Prodinger, C.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Radbruch, H.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Ramakrishnan, C.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Rashidi, M.

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Requardt, H.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Ricard, C.

C. Ricard and F. C. Debarbieux, “Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment,” Front. Cell. Neurosci. 8, 57 (2014).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

Rodriguez, T.

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

Rougon, G.

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

Sakaue-Sawano, A.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Sanes, J. R.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Sano, H.

S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
[Crossref] [PubMed]

Schiefenhövel, F.

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Segebarth, C.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Seng Teng, K.

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

Serduc, R.

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

Shaner, N. C.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

Shimogori, T.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Siffrin, V.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Somveille, L.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

Stanchi, F.

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
[Crossref] [PubMed]

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

Steinbach, P. A.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

Steinman, R. M.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Supatto, W.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Tang, L.

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

Tirniceru, A.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

Tsien, R. Y.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

Ustione, A.

A. Ustione and D. W. Piston, “A simple introduction to multiphoton microscopy,” J. Microsc. 243(3), 221–226 (2011).
[Crossref] [PubMed]

van der Sanden, B.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

Varas, F.

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

Vérant, P.

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

Vial, J.-C.

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

von Baumgarten, L.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Walker-Samuel, S.

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

Wallace, J.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Wallace, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Waters, E. M.

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weber, P.

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

Winkler, F.

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

Zalc, M.

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

Zalocusky, K. A.

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Zimmerley, M.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Zipp, F.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Acta Neuropathol. (1)

C. Prodinger, J. Bunse, M. Krüger, F. Schiefenhövel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher, and I. Bechmann, “CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system,” Acta Neuropathol. 121(4), 445–458 (2011).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

S. W. Perry, R. M. Burke, and E. B. Brown, “Two-photon and second harmonic microscopy in clinical and translational cancer research,” Ann. Biomed. Eng. 40(2), 277–291 (2012).
[Crossref] [PubMed]

Asian J. Neurosurg. (1)

S. Balamurugan, A. Agrawal, Y. Kato, and H. Sano, “Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature,” Asian J. Neurosurg. 6(2), 88–93 (2011).
[Crossref] [PubMed]

Bioimpacts (1)

O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” Bioimpacts 4(3), 149–166 (2014).
[Crossref] [PubMed]

Biophys. J. (1)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Blood (1)

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, “Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages,” Blood 96(2), 719–726 (2000).
[PubMed]

Clin. Cancer Res. (1)

L. von Baumgarten, D. Brucker, A. Tirniceru, Y. Kienast, S. Grau, S. Burgold, J. Herms, and F. Winkler, “Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells,” Clin. Cancer Res. 17(19), 6192–6205 (2011).
[Crossref] [PubMed]

Front. Cell. Neurosci. (1)

C. Ricard and F. C. Debarbieux, “Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment,” Front. Cell. Neurosci. 8, 57 (2014).
[Crossref] [PubMed]

Glia (1)

F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms, “Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis,” Glia 57(12), 1306–1315 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

P. Vérant, R. Serduc, B. van der Sanden, R. Chantal, C. Ricard, J. A. Coles, and J.-C. Vial, “Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex,” J. Biomed. Opt. 13(1), 011002 (2008).
[Crossref] [PubMed]

A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20(8), 080503 (2015).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (Nihongoban) (1)

S. Paris-Robidas, D. Brouard, V. Emond, M. Parent, and F. Calon, “Internalization of targeted quantum dots by brain capillary endothelial cells in vivo,” J. Cereb. Blood Flow Metab. (Nihongoban) 2015, 0271678X (2015).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman, and B. S. McEwen, “CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain,” J. Comp. Neurol. 508(5), 687–710 (2008).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Tang, R. Ji, X. Li, K. Seng Teng, and S. Ping Lau, “Energy-level structure of nitrogen-doped graphene quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(32), 4908–4915 (2013).
[Crossref]

J. Microsc. (2)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

A. Ustione and D. W. Piston, “A simple introduction to multiphoton microscopy,” J. Microsc. 243(3), 221–226 (2011).
[Crossref] [PubMed]

J. Physiol. (2)

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury,” J. Physiol. 591(19), 4895–4902 (2013).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, M. Hocine, M. Zalc, G. Rougon, and F. Debarbieux, “Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows,” J. Physiol. 590(16), 3665–3675 (2012).
[Crossref] [PubMed]

J. Synchrotron Radiat. (1)

C. Ricard, M. Fernández, J. Gastaldo, L. Dupin, L. Somveille, R. Farion, H. Requardt, J.-C. Vial, H. Elleaume, C. Segebarth, and B. van der Sanden, “Short-term effects of synchrotron irradiation on vasculature and tissue in healthy mouse brain,” J. Synchrotron Radiat. 16(4), 477–483 (2009).
[Crossref] [PubMed]

J. Vis. Exp. (2)

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, “An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy,” J. Vis. Exp. 86(86), e51108 (2014).
[Crossref] [PubMed]

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, “Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis,” J. Vis. Exp. 82(82), e50826 (2013).
[Crossref] [PubMed]

Nat. Methods (4)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Neurosci. (1)

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14(11), 1481–1488 (2011).
[Crossref] [PubMed]

Nature (1)

K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).
[Crossref] [PubMed]

Neuron (1)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

PLoS One (1)

C. Ricard, F. Stanchi, T. Rodriguez, M. C. Amoureux, G. Rougon, and F. Debarbieux, “Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density,” PLoS One 8(9), e72655 (2013).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

QD655 are better excited by an OPO. (A). QD655 two-photon excitation spectrum under a NLO (green, 720-1040nm) and an OPO (red, 1050-1300nm) excitation. Signal was collected on the 5 NDDs and spectrum was normalized to laser power. Inset: laser power at the output of the objective. (B). Cluster of QD655 imaged under an 800nm NLO (top) or 1050nm OPO (bottom) excitation. Signal was collected on the 605-678 NDD (NDD1). Scale-bars: 25µm. (C). Emission intensity of QD655 coated on a glass coverslip and excited by an 800nm NLO (green) or 1050nm OPO (red) excitation. Emission was normalized at 100 for NLO excitation. *: p = 0.0003, Wilcoxon signed rank test.

Fig. 2
Fig. 2

OPO is more efficient than NLO to excite QD655 in the healthy mouse brain and it increases the maximal achievable imaging depth. (A). Images taken at various depths (100 to 500µm below the dura-mater) under an 800nm NLO or 1050nm OPO excitation in the same region of interest in the brain of a living mouse intravenously injected with a solution of QD655. (B). QD655 signal intensity ratio (OPO/NLO) measured at various depths. n = 18, 18, 18, 18, 16 and 9 measurements from 3 independent acquisitions. §: p = 0.0026, 300 vs. 0µm ; *: p<0.004, 400 vs. 0, 100, 200 and 300µm ; #: p<0.02, 500 vs. 0, 100, 200, 300µm ; Mann-Whitney test. (C). Tridimensional reconstruction of brain blood vessels under an 800nm NLO or 1050nm OPO excitation in the same region of interest. (D). Left: maximal imaging depth achievable over time from 0 to 16 days (D) post-surgery under NLO and OPO excitation in 2 different mice. Right: Representative images from mouse #1 at different depths, excitation modalities and time post-surgery. (E). Images taken at the same level (−70µm) under a 1050nm OPO excitation at D0 and D1 after an unique intravenous injection of QD655 at D0. (F). Images taken at the same level (−70µm) under a 1050nm OPO excitation at D8 and D13 after repeated intravenous injection of QD655 at D0, D2, D8 and D13. (G). Image taken at −70µm under a 800nm NLO excitation 5 days after an intravenous injection of Rhodamine-dextran 70kDa (red). Blood-vessels are highlighted by an intravenous injection of Texas-red dextran 70kDa (green) prior to imaging. Note the accumulation of Rhodamine dextran 70kDa (red) in macrophages as a consequence of previous injections.

Fig. 3
Fig. 3

OPO is more efficient than NLO to excite QD655 in the healthy mouse spinal cord. (A). Images taken at various depths (140 to 240µm below the dura-mater) under an 800nm NLO or 1050nm OPO excitation in the same region of interest in the spinal cord of a living mouse intravenously injected with a solution of QD655. Arrowheads highlight the improvement of XY spatial resolution under an OPO excitation (B). XY and orthogonal (Z) reconstruction of the central vein at 200µm below the dura-mater under an 800nm NLO or 1050nm OPO excitation. Arrows: diving blood vessel highlighted in the bottom panel. Bottom panel: Y profiles of a diving vein at various depths demonstrate that OPO excitation enables observations at greater depths than NLO. Scale-bar: 100µm.

Fig. 4
Fig. 4

QD655 can be used in combination with fluorescent proteins. (A-B). DsRed2 (green) and QD655 (red) emission spectra under an 800nm NLO (A) or 1050nm OPO (B) excitation. (C). Spectrally unmixed image of GL261 DsRed2-expressing cells (green) growing on a glass coverslip with QD655 (red) added in the medium using the spectral deconvolution algorithm of the Zeiss Zen 2012 software. Scale-bar: 25µm. (D). Emission intensity of DsRed2 expressed in GL261 cells under an 800nm NLO (green) or 1050nm OPO (red) excitation. Emission was normalized at 100 for NLO excitation. *: p = 0.002, Wilcoxon signed rank test. (E). XY and orthogonal (Z) reconstruction of the central vein of the spinal cord at 180µm below the dura-mater under a 940nm NLO or 1050nm OPO excitation in a CD11c-EYFP mouse. Dotted line: CD11c-EYFP+ cell. Scale-bar: 100µm. (F). Tridimensional reconstruction of an area of the cerebral cortex of a Thy1-CFP/CD11c-EYFP mouse from a sequential 800nm NLO and 1050nm OPO intravital acquisition. Green: Thy1-CFP neurons (NLO), Red: QD655 in blood vessels (OPO), Magenta: CD11c-EYFP dendritic cells/microglia (OPO). (G). Tridimensional reconstruction of the upper part of the spinal cord of a Thy1-CFP/LysM-EGFP/CD11c-EYFP mouse from a sequential 800nm NLO and 1050nm OPO intravital acquisition. Cyan: Thy1-CFP neurons (NLO), Green: LysM-EGFP monocytes (NLO), Yellow: CD11c-EYFP dendritic cells/microglia (OPO), Red: QD655 in blood vessels (OPO).

Metrics