Abstract

High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues

Zuoming Qian, Aghapi Mordovanakis, Joshua E. Schoenly, Andrés Covarrubias, Yuanfeng Feng, Lothar Lilge, and Robin S. Marjoribanks
Biomed. Opt. Express 5(1) 208-222 (2014)

Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Gabriele Cristoforetti, Marco Tiberi, Andrea Simonelli, Paolo Marsili, and Francesco Giammanco
Appl. Opt. 51(7) B30-B41 (2012)

Pump-probe imaging of nanosecond laser-induced bubbles in agar gel

R. Evans, S. Camacho-López, F. G. Pérez-Gutiérrez, and G. Aguilar
Opt. Express 16(10) 7481-7492 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
    [Crossref] [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
    [Crossref]
  4. C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
    [Crossref]
  5. A. Vogel and V. Venugopalan, “Mechanisms of Pulsed Laser Ablation of Biological Tissues (Chem. Rev.2003, 103, 577−644. Published on the Web 02/12/03.),” Chem. Rev. 103(5), 2079 (2003).
    [Crossref]
  6. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  7. F. Docchio, “Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG Laser Pulses of Different Duration,” Europhys. Lett. 6(5), 407–412 (1988).
    [Crossref]
  8. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
    [Crossref]
  9. A. Vogel and V. Venugopalan, “Pulsed Laser Ablation of Soft Biological Tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. 2nd ed. (Springer Science + Business Media B. V., 2011), pp. 551–615.
  10. P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
    [Crossref]
  11. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  12. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
    [Crossref] [PubMed]
  13. D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
    [Crossref] [PubMed]
  14. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
    [Crossref]
  15. Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
    [Crossref] [PubMed]
  16. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
    [Crossref]
  17. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. Transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
    [Crossref]
  18. Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
    [Crossref] [PubMed]
  19. A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
    [PubMed]
  20. T. Juhasz and G. Kastis, “Shock wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration,” Proc. SPIE 2681, 428–436 (1996).
  21. E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
    [Crossref]
  22. N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
    [Crossref] [PubMed]
  23. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996).
    [Crossref]
  24. R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
    [Crossref] [PubMed]
  25. C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
    [Crossref]
  26. C. Kerse, “Ablation cooled material removal with bursts of ultrafast pulses,” Bilkent University (2016).
  27. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
    [Crossref]
  28. E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281 (2006).
    [Crossref]
  29. W. Lauterborn and A. Vogel, Bubble Dynamics and Shock Waves (Springer Berlin Heidelberg, 2013), pp. 67–103.
  30. R. C. C. Chen, Y. T. Yu, K. W. Su, J. F. Chen, and Y. F. Chen, “Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface,” Opt. Express 21(1), 445–453 (2013).
    [Crossref] [PubMed]
  31. J. R. Blake and D. C. Gibson, “Cavitation bubbles near boundaries,” Annu. Rev. Fluid Mech. 19(1), 99–123 (1987).
    [Crossref]
  32. R. H. Cole and R. Weller, “Underwater explosions,” Phys. Today 1(6), 35 (1948).
    [Crossref]
  33. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]

2016 (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

2014 (5)

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

2009 (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2006 (2)

2005 (3)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of Pulsed Laser Ablation of Biological Tissues (Chem. Rev.2003, 103, 577−644. Published on the Web 02/12/03.),” Chem. Rev. 103(5), 2079 (2003).
[Crossref]

2001 (2)

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
[Crossref]

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

1999 (2)

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

1996 (5)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. Transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

T. Juhasz and G. Kastis, “Shock wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration,” Proc. SPIE 2681, 428–436 (1996).

D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

1994 (1)

A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
[PubMed]

1988 (1)

F. Docchio, “Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG Laser Pulses of Different Duration,” Europhys. Lett. 6(5), 407–412 (1988).
[Crossref]

1987 (1)

J. R. Blake and D. C. Gibson, “Cavitation bubbles near boundaries,” Annu. Rev. Fluid Mech. 19(1), 99–123 (1987).
[Crossref]

1948 (1)

R. H. Cole and R. Weller, “Underwater explosions,” Phys. Today 1(6), 35 (1948).
[Crossref]

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Akhatov, I.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Apitz, I.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

Arai, A.

Asiyo-Vogel, M. N.

A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
[PubMed]

Ben-Yakar, A.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
[PubMed]

Blackwell, R.

Blake, J. R.

J. R. Blake and D. C. Gibson, “Cavitation bubbles near boundaries,” Annu. Rev. Fluid Mech. 19(1), 99–123 (1987).
[Crossref]

Bovatsek, J.

Brooks, D. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Brujan, E. A.

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281 (2006).
[Crossref]

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
[Crossref]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Capon, M. R.

A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
[PubMed]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Chen, J. F.

Chen, K. P.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
[Crossref]

Chen, R. C. C.

Chen, Y. F.

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Cole, R. H.

R. H. Cole and R. Weller, “Underwater explosions,” Phys. Today 1(6), 35 (1948).
[Crossref]

Covarrubias, A.

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

DeMagistris, M.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Dille, C.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Ding, L.

Docchio, F.

F. Docchio, “Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG Laser Pulses of Different Duration,” Europhys. Lett. 6(5), 407–412 (1988).
[Crossref]

Eaton, S.

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Ellis, J. D.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Feng, Y.

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Forrester, P.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gibson, D. C.

J. R. Blake and D. C. Gibson, “Cavitation bubbles near boundaries,” Annu. Rev. Fluid Mech. 19(1), 99–123 (1987).
[Crossref]

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Herman, P.

Herman, P. R.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
[Crossref]

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Huxlin, K. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Juhasz, T.

T. Juhasz and G. Kastis, “Shock wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration,” Proc. SPIE 2681, 428–436 (1996).

Kaifosh, P.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kastis, G.

T. Juhasz and G. Kastis, “Shock wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration,” Proc. SPIE 2681, 428–436 (1996).

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Knox, W. H.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
[Crossref] [PubMed]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Krüger, A.

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

Künzler, J. F.

Lauterborn, W.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Lilge, L.

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Lindau, O.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Lubatschowski, H.

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

Lübking, E.

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

MacRae, S.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Marjoribanks, R. S.

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
[Crossref]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McKee, D.

McKinney, L.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Mettin, R.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Mordovanakis, A.

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Nahen, K.

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. Transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Oettl, A.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
[Crossref]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Qian, Z.

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Ripken, T.

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Röttgers, R.

Savage, D. E.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Schmidt, P.

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
[Crossref]

Schoenly, J. E.

Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
[Crossref] [PubMed]

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Schüler, H.

Shah, L.

Su, K. W.

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Tinne, N.

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

Topolnikov, A.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Utschig, C.

Vakhitova, N.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of Pulsed Laser Ablation of Biological Tissues (Chem. Rev.2003, 103, 577−644. Published on the Web 02/12/03.),” Chem. Rev. 103(5), 2079 (2003).
[Crossref]

Vogel, A.

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281 (2006).
[Crossref]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of Pulsed Laser Ablation of Biological Tissues (Chem. Rev.2003, 103, 577−644. Published on the Web 02/12/03.),” Chem. Rev. 103(5), 2079 (2003).
[Crossref]

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. Transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
[PubMed]

von der Linde, D.

Weller, R.

R. H. Cole and R. Weller, “Underwater explosions,” Phys. Today 1(6), 35 (1948).
[Crossref]

Xu, L.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Yildirim, M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Yoshino, F.

Yu, Y. T.

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Zhang, H.

Annu. Rev. Fluid Mech. (1)

J. R. Blake and D. C. Gibson, “Cavitation bubbles near boundaries,” Annu. Rev. Fluid Mech. 19(1), 99–123 (1987).
[Crossref]

Appl. Phys. B (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

Biomed. Opt. Express (1)

Biomed. Tech. (Berl.) (1)

N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl.) 57(SI-1 Track-PSuppl 1), 4115 (2012).
[Crossref] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of Pulsed Laser Ablation of Biological Tissues (Chem. Rev.2003, 103, 577−644. Published on the Web 02/12/03.),” Chem. Rev. 103(5), 2079 (2003).
[Crossref]

Europhys. Lett. (1)

F. Docchio, “Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG Laser Pulses of Different Duration,” Europhys. Lett. 6(5), 407–412 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. Transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

A. Vogel, M. R. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci. 35(7), 3032–3044 (1994).
[PubMed]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

J. Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

J. Fluid Mech. (2)

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281 (2006).
[Crossref]

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech. 433, 251–281 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Opt. Express (4)

Photonics Lasers Med. (1)

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155 (2012).
[Crossref]

Phys. Fluids (1)

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[Crossref]

Phys. Today (1)

R. H. Cole and R. Weller, “Underwater explosions,” Phys. Today 1(6), 35 (1948).
[Crossref]

Proc. SPIE (2)

T. Juhasz and G. Kastis, “Shock wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration,” Proc. SPIE 2681, 428–436 (1996).

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains,” Proc. SPIE 3616, 148–155 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

Z. Qian, J. E. Schoenly, A. Covarrubias, L. Lilge, and R. S. Marjoribanks, “Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation,” Rev. Sci. Instrum. 85(3), 033101 (2014).
[Crossref] [PubMed]

Other (3)

A. Vogel and V. Venugopalan, “Pulsed Laser Ablation of Soft Biological Tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. 2nd ed. (Springer Science + Business Media B. V., 2011), pp. 551–615.

C. Kerse, “Ablation cooled material removal with bursts of ultrafast pulses,” Bilkent University (2016).

W. Lauterborn and A. Vogel, Bubble Dynamics and Shock Waves (Springer Berlin Heidelberg, 2013), pp. 67–103.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Burst-mode irradiation of a 4% agar gel (single 10-µs burst, 133-MHz pulse repetition-rate, Iavg = 5.0 × 1012 W cm−2. A total of 1,250 pulses were recorded, limited by the record-length of the oscilloscope: (a) Input pulsetrain envelope. (b) The time-resolved total reflection (R), transmission (T), and net absorption (A). (c) and (d) each shows the first 3 µs and 1 µs of subplot (a), respectively.
Fig. 2
Fig. 2 Considering only the first 200 pulses: (a) distribution by pulse number N of which pulse in the burst experiences the greatest absorption, (b) distribution by pulse number N of which laser pulse first surpasses 90% of the peak absorption.
Fig. 3
Fig. 3 Absorption of first 200 pulses in the burst (a) Peak per-pulse absorption fraction vs. irradiance (b) Average per-pulse absorption vs. irradiance. (all samples: distilled water and agar gels of different concentrations; single 10-µs burst, 133-MHz pulsetrain.) The per-pulse peak absorption reflects optical breakdown physics; the per-pulse averaged absorption reflects optical breakdown combined with subsequent ionization dynamics and hydrodynamics.
Fig. 4
Fig. 4 (a) the distribution of coefficients of correlation comparing the intensity of incident pulses and their absorption, for 68 separate burst-shots. The mean and the standard deviation of all correlation coefficients are – 0.1 ± 0.3. (b) stability of input pulsetrain-bursts, from the distribution of coefficients of variance of pulse irradiances. The coefficient of variance is calculated as the ratio between the standard deviation and the mean of the pulsetrain irradiance.
Fig. 5
Fig. 5 (a) Autocorrelation of the time-dependent absorption corresponding to Fig. 1(b). (b) Mean periods of oscillation, identified from the autocorrelation of absorption, for shots with Iavg ≥ 3.0 × 1012 W cm−2 and which exhibited three or more cycles of oscillation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T B = R max ( 2×0.915 ρ 0 ρ 0 ρ ν ).
p(t)= p s exp{ t / t 0 },
E S = 4π R 2 ρ 0 c 0 p S 2 t 0 2 ,

Metrics