Abstract

We characterise the performance of a beam enhancing element (‘photon diode’) for use in deep Raman spectroscopy (DRS) of biological tissues. The optical component enhances the number of laser photons coupled into a tissue sample by returning escaping photons back into it at the illumination zone. The method is compatible with transmission Raman spectroscopy, a deep Raman spectroscopy concept, and its implementation leads to considerable enhancement of detected Raman photon rates. In the past, the enhancement concept was demonstrated with a variety of samples (pharmaceutical tablets, tissue, etc) but it was not systematically characterized with biological tissues. In this study, we investigate the enhancing properties of the photon diode in the transmission Raman geometry as a function of: a) the depth and b) the optical properties of tissue samples. Liquid tissue phantoms were employed to facilitate systematic variation of optical properties. These were chosen to mimic optical properties of human tissues, including breast and prostate. The obtained results evidence that a photon diode can enhance Raman signals of tissues by a maximum of × 2.4, although it can also decrease the signals created towards the back of samples that exhibit high scattering or absorption properties.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

23 May 2016: A correction was made to the copyright.


OSA Recommended Articles
Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media

Sanathana Konugolu Venkata Sekar, Sara Mosca, Andrea Farina, Fabrizio Martelli, Paola Taroni, Gianluca Valentini, Rinaldo Cubeddu, and Antonio Pifferi
Opt. Express 25(5) 4585-4597 (2017)

Snapshot depth sensitive Raman spectroscopy in layered tissues

Wei Liu, Yi Hong Ong, Xiao Jun Yu, Jian Ju, Clint Michael Perlaki, Lin Bo Liu, and Quan Liu
Opt. Express 24(25) 28312-28325 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
    [Crossref] [PubMed]
  2. P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
    [Crossref] [PubMed]
  3. P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45(7), 1794–1802 (2016).
    [PubMed]
  4. N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
    [Crossref] [PubMed]
  5. P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc. 61(8), 845–854 (2007).
    [Crossref] [PubMed]
  6. K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
    [Crossref] [PubMed]
  7. J. A. Griffen, A. W. Owen, and P. Matousek, “Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose,” Analyst (Lond.) 140(1), 107–112 (2015).
    [Crossref] [PubMed]
  8. P. Matousek, “Enhancement of laser radiation coupled into turbid media by using a unidirectional mirror,” J. Opt. Soc. Am. B 25(7), 1223–1230 (2008).
    [Crossref]
  9. C. Eliasson and P. Matousek, “Passive signal enhancement in spatially offset Raman spectroscopy,” J. Raman Spectrosc. 39(5), 633–637 (2008).
    [Crossref]
  10. P. Matousek, N. Everall, D. Littlejohn, A. Nordon, and M. Bloomfield, “Dependence of Signal on Depth in Transmission Raman Spectroscopy,” Appl. Spectrosc. 65(7), 724–733 (2011).
    [Crossref] [PubMed]
  11. M. J. Pelletier, “Sensitivity-Enhanced Transmission Raman Spectroscopy,” Appl. Spectrosc. 67(8), 829–840 (2013).
    [Crossref] [PubMed]
  12. M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
    [Crossref] [PubMed]
  13. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  14. I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
    [Crossref] [PubMed]
  15. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  16. S. L. Jacques, “Skin Optics,” in Skin Optics (Oregon Medical Laser Center News, 1998).
  17. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
    [Crossref] [PubMed]
  18. T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
    [PubMed]
  19. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref] [PubMed]
  20. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
    [Crossref] [PubMed]
  21. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
    [Crossref] [PubMed]
  22. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm - art. no. 616310,” Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII 6163, 16310–16310 (2006).
  23. C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
    [Crossref] [PubMed]
  24. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
    [Crossref] [PubMed]
  25. M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
    [Crossref] [PubMed]
  26. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, and V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” International Conference on Lasers, Applications, and Technologies 2007: Laser Technologies for Medicine 6734, 73401–73401 (2007).
  27. Y. Pu, W. Wang, M. Al-Rubaiee, S. K. Gayen, and M. Xu, “Determination of Optical Coefficients and Fractal Dimensional Parameters of Cancerous and Normal Prostate Tissues,” Appl. Spectrosc. 66(7), 828–834 (2012).
    [Crossref] [PubMed]
  28. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
    [Crossref] [PubMed]
  29. F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
    [Crossref] [PubMed]
  30. “Prostate Gland,” in The Great Soviet Encyclopedia, I. The Gale Group, ed. (2010).
  31. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [Crossref] [PubMed]
  32. V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
    [Crossref]
  33. T. O. McBride, “Spectroscopic Reconstructed Near Infrared Tomographic Imaging for Breast Cancer Diagnosis,” (Dartmouth College, Hanover, New Hampshire, 2001).
  34. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
    [Crossref] [PubMed]
  35. Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
    [Crossref]
  36. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express 18(26), 26854–26865 (2010).
    [Crossref] [PubMed]
  37. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J. P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H. C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  38. P. H. Eilers and H. F. Boelens, “Baseline correction with asymmetric least squares smoothing,” Leiden University Medical Centre Report (2005).
  39. G. Y. Chen, S. E. Qian, and S. Gleason, “Denoising of hyperspectral imagery by combining PCA with block-matching 3-D filtering,” Can. J. Rem. Sens. 37(6), 590–595 (2012).
    [Crossref]
  40. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
    [Crossref] [PubMed]

2016 (2)

P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45(7), 1794–1802 (2016).
[PubMed]

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

2015 (3)

J. A. Griffen, A. W. Owen, and P. Matousek, “Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose,” Analyst (Lond.) 140(1), 107–112 (2015).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
[Crossref] [PubMed]

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

M. J. Pelletier, “Sensitivity-Enhanced Transmission Raman Spectroscopy,” Appl. Spectrosc. 67(8), 829–840 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (3)

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Y. Pu, W. Wang, M. Al-Rubaiee, S. K. Gayen, and M. Xu, “Determination of Optical Coefficients and Fractal Dimensional Parameters of Cancerous and Normal Prostate Tissues,” Appl. Spectrosc. 66(7), 828–834 (2012).
[Crossref] [PubMed]

G. Y. Chen, S. E. Qian, and S. Gleason, “Denoising of hyperspectral imagery by combining PCA with block-matching 3-D filtering,” Can. J. Rem. Sens. 37(6), 590–595 (2012).
[Crossref]

2011 (4)

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

P. Matousek, N. Everall, D. Littlejohn, A. Nordon, and M. Bloomfield, “Dependence of Signal on Depth in Transmission Raman Spectroscopy,” Appl. Spectrosc. 65(7), 724–733 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (4)

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref] [PubMed]

P. Matousek, “Enhancement of laser radiation coupled into turbid media by using a unidirectional mirror,” J. Opt. Soc. Am. B 25(7), 1223–1230 (2008).
[Crossref]

C. Eliasson and P. Matousek, “Passive signal enhancement in spatially offset Raman spectroscopy,” J. Raman Spectrosc. 39(5), 633–637 (2008).
[Crossref]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

2007 (4)

P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc. 61(8), 845–854 (2007).
[Crossref] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2002 (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

1999 (3)

V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref] [PubMed]

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[Crossref] [PubMed]

1998 (2)

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

1985 (1)

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Albrecht, D.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Al-Rubaiee, M.

Andersson-Engels, S.

Ariese, F.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Aruna, P.

Ashton, L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Baker, R.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Baribeau, F.

Bénazech-Lavoué, M.

Bérubé-Lauzière, Y.

Bevilacqua, F.

Bird, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Bloomfield, M.

Bodnar, O.

Bonaldo, E.

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Bonnier, J. J.

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Botwicz, M.

Bouchard, J. P.

Buckley, K.

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

Buhr, H. J.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Butler, H. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Chance, B.

V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
[Crossref]

Chen, G. Y.

G. Y. Chen, S. E. Qian, and S. Gleason, “Denoising of hyperspectral imagery by combining PCA with block-matching 3-D filtering,” Can. J. Rem. Sens. 37(6), 590–595 (2012).
[Crossref]

Cinque, G.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Cogorno, N.

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Cubeddu, R.

Cuccia, D. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Curtis, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Dalgaard, T.

Dam, J. S.

de Wilde, W.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Depeursinge, C.

Di Ninni, P.

Dorney, J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Durduran, T.

Einarsdóttír, M.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Eliasson, C.

C. Eliasson and P. Matousek, “Passive signal enhancement in spatially offset Raman spectroscopy,” J. Raman Spectrosc. 39(5), 633–637 (2008).
[Crossref]

Elster, C.

Esmonde-White, F. W. L.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Esmonde-White, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Everall, N.

Fabricius, P. E.

Fantini, S.

Farina, A.

Feng, L. Q.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Foschum, F.

Franceschini, M. A.

Fullwood, N. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gallant, P.

Gardner, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
[Crossref] [PubMed]

Gayen, S. K.

Germer, C. T.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Gijsbers, G. H. M.

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Glanzmann, T.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[Crossref] [PubMed]

Gleason, S.

G. Y. Chen, S. E. Qian, and S. Gleason, “Denoising of hyperspectral imagery by combining PCA with block-matching 3-D filtering,” Can. J. Rem. Sens. 37(6), 590–595 (2012).
[Crossref]

Gong, Z. J.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Griffen, J. A.

J. A. Griffen, A. W. Owen, and P. Matousek, “Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose,” Analyst (Lond.) 140(1), 107–112 (2015).
[Crossref] [PubMed]

Gross, J. D.

Ho, H. C.

Imperiale, A.

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Iping Petterson, I. E.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Isbert, C.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Kacprzak, M.

Kaschke, M.

Khoptyar, D.

Kienle, A.

Klauenberg, K.

Leclair, S.

Lesage, F.

Liebert, A.

Littlejohn, D.

Liu, M. L.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Liu, X. H.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Ma, X. H.

V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
[Crossref]

Marquet, P.

Martelli, F.

Martin, F. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Matousek, P.

P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45(7), 1794–1802 (2016).
[PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
[Crossref] [PubMed]

J. A. Griffen, A. W. Owen, and P. Matousek, “Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose,” Analyst (Lond.) 140(1), 107–112 (2015).
[Crossref] [PubMed]

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

P. Matousek, N. Everall, D. Littlejohn, A. Nordon, and M. Bloomfield, “Dependence of Signal on Depth in Transmission Raman Spectroscopy,” Appl. Spectrosc. 65(7), 724–733 (2011).
[Crossref] [PubMed]

P. Matousek, “Enhancement of laser radiation coupled into turbid media by using a unidirectional mirror,” J. Opt. Soc. Am. B 25(7), 1223–1230 (2008).
[Crossref]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

C. Eliasson and P. Matousek, “Passive signal enhancement in spatially offset Raman spectroscopy,” J. Raman Spectrosc. 39(5), 633–637 (2008).
[Crossref]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc. 61(8), 845–854 (2007).
[Crossref] [PubMed]

Mazurenka, M.

McAinsh, M. R.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Mermut, O.

Michels, R.

Milej, D.

Moesta, K. T.

Morris, M. D.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Müller, G.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Noiseux, I.

Nordon, A.

Ntziachristos, V.

V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
[Crossref]

O’Sullivan, T. D.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Owen, A. W.

J. A. Griffen, A. W. Owen, and P. Matousek, “Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose,” Analyst (Lond.) 140(1), 107–112 (2015).
[Crossref] [PubMed]

Parker, A. W.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pedersen, C. B.

Pelletier, M. J.

Pifferi, A.

Piguet, D.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pu, Y.

Qian, S. E.

G. Y. Chen, S. E. Qian, and S. Gleason, “Denoising of hyperspectral imagery by combining PCA with block-matching 3-D filtering,” Can. J. Rem. Sens. 37(6), 590–595 (2012).
[Crossref]

Qin, B. Q.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Quartini, M. G.

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Ritz, J. P.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Rogers, K.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Roggan, A.

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Sandell, J. L.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Sardanelli, F.

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Sawosz, P.

Schets, G. A. C. M.

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Schlag, P. M.

Shi, Z. Q.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Spinelli, L.

Stassen, E. G.

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Stone, N.

P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45(7), 1794–1802 (2016).
[PubMed]

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
[Crossref] [PubMed]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Subash, A. A.

Svanberg, K.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Svensson, T.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Torricelli, A.

Tromberg, B. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref] [PubMed]

van Gemert, M. J. C.

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Vardaki, M. Z.

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
[Crossref] [PubMed]

Verdaasdonk, R.

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

Wabnitz, H.

Walker, S. A.

Walsh, M. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Wang, W.

Weigel, U.

Xu, M.

Yin, Y.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Yodh, A. G.

V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
[Crossref]

Zaccanti, G.

Zandrino, F.

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Zhang, Y. L.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Zhu, G. W.

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Zhu, T. C.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Zolek, N.

Analyst (Lond.) (4)

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

J. A. Griffen, A. W. Owen, and P. Matousek, “Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose,” Analyst (Lond.) 140(1), 107–112 (2015).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst (Lond.) 140(15), 5112–5119 (2015).
[Crossref] [PubMed]

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (4)

Biomed. Opt. Express (1)

Can. J. Rem. Sens. (1)

G. Y. Chen, S. E. Qian, and S. Gleason, “Denoising of hyperspectral imagery by combining PCA with block-matching 3-D filtering,” Can. J. Rem. Sens. 37(6), 590–595 (2012).
[Crossref]

Cancer Res. (1)

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45(7), 1794–1802 (2016).
[PubMed]

J. Biomed. Opt. (4)

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

J. Biophotonics (1)

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Pharm. Biomed. Anal. (1)

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

C. Eliasson and P. Matousek, “Passive signal enhancement in spatially offset Raman spectroscopy,” J. Raman Spectrosc. 39(5), 633–637 (2008).
[Crossref]

Lasers Surg. Med. (2)

M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical Properties of Human Blood Vessel Wall and Plaque,” Lasers Surg. Med. 5(3), 235–237 (1985).
[Crossref] [PubMed]

C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers Surg. Med. 23(4), 194–203 (1998).
[Crossref] [PubMed]

Nat. Protoc. (1)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Org. Geochem. (1)

Y. L. Zhang, Y. Yin, X. H. Liu, Z. Q. Shi, L. Q. Feng, M. L. Liu, G. W. Zhu, Z. J. Gong, and B. Q. Qin, “Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China,” Org. Geochem. 42(5), 510–519 (2011).
[Crossref]

Phys. Med. Biol. (2)

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Radiology (1)

F. Sardanelli, F. Zandrino, A. Imperiale, E. Bonaldo, M. G. Quartini, and N. Cogorno, “Breast biphasic compression versus standard monophasic compression in X-ray mammography,” Radiology 217(2), 576–580 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70(1), 193–201 (1999).
[Crossref]

Other (6)

T. O. McBride, “Spectroscopic Reconstructed Near Infrared Tomographic Imaging for Breast Cancer Diagnosis,” (Dartmouth College, Hanover, New Hampshire, 2001).

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, and V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” International Conference on Lasers, Applications, and Technologies 2007: Laser Technologies for Medicine 6734, 73401–73401 (2007).

“Prostate Gland,” in The Great Soviet Encyclopedia, I. The Gale Group, ed. (2010).

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm - art. no. 616310,” Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII 6163, 16310–16310 (2006).

S. L. Jacques, “Skin Optics,” in Skin Optics (Oregon Medical Laser Center News, 1998).

P. H. Eilers and H. F. Boelens, “Baseline correction with asymmetric least squares smoothing,” Leiden University Medical Centre Report (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Reduced scattering and absorption coefficient for different types of mammalian tissues obtained from literature data. Each sphere represents the range of optical properties for each individual type of tissue. The cross (shown with labels in Fig. 3) indicates the range of optical properties of the phantoms in the current study.
Fig. 2
Fig. 2 (i) Liquid tissue phantoms components. (ii) Photon diode placed inside a metal plate and inserted inside the quartz cell in contact with the laser beam entrance wall when undertaking photon diode measurements.
Fig. 3
Fig. 3 Scatterer and absorber concentrations (a) and optical properties (b) of the liquid tissue phantoms prepared and measured with transmission Raman spectroscopy.
Fig. 4
Fig. 4 Schematic diagram of the deep Raman setup in the transmission mode used.
Fig. 5
Fig. 5 Raman scattering 2D plots of Phantom 3 (μ’s = 13.82 cm−1, μa = 0.8 cm−1) with (a) and without (b) the photon diode in a transmission mode. Laser photons are injected on the left of the image and Raman signal is collected on the right. The plots depict the intensity of ~1193 cm−1 Raman band of trans-stilbene as the vial moves to different positions in the phantom. The 2D plot (b) has been normalized against the maximum intensity of the diode map (a).
Fig. 6
Fig. 6 Ratio of trans-stilbene Raman signal intensity with diode over signal without the diode versus the trans-stilbene vial position along the x-axis in the phantom (mm), for phantoms with the same absorption but different scattering coefficients. The coefficients are presented in cm−1.
Fig. 7
Fig. 7 Ratio of trans-stilbene signals with diode over signal without the diode versus the trans-stilbene vial position along the x-axis in the phantom (mm), for phantoms with same scattering but different absorption coefficients. The coefficients are presented in cm−1.

Tables (2)

Tables Icon

Table 1 Optical properties of the different types of mammalian tissue as found in the literature. The reduced scattering coefficient values are presented in ascending order.

Tables Icon

Table 2 Optical properties of the liquid tissue phantoms used in the study. The material used to provide the distinct Raman signal at given locations was trans-stilbene.

Metrics