Abstract

We proposed and developed a photoacoustic (PA) dermoscope equipped with an integrated PA probe to achieve quantification and high-resolution, high-contrast deep imaging of human skin. The PA probe, with light-sound confocal excitation and reception, is specially designed, and integrated with an objective lens, an ultrasound transducer, and an inverted-triangle coupling cup to facilitate convenient implementation in a clinical setting. The PA dermoscope was utilized for noninvasive and high-resolution imaging of epidermal and dermal structure in volunteers. The imaging results demonstrated that the characteristic parameters of skin disease, including pigment distribution and thickness, vascular diameter, and depth, can be obtained by the PA dermoscope, confirming that PA dermoscopy can serve as a potential tool for the diagnosis and curative effect evaluation of human skin disease.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In situ structural and microangiographic assessment of human skin lesions with high-speed OCT

Cedric Blatter, Jessika Weingast, Aneesh Alex, Branislav Grajciar, Wolfgang Wieser, Wolfgang Drexler, Robert Huber, and Rainer A. Leitgeb
Biomed. Opt. Express 3(10) 2636-2646 (2012)

Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

Dermoscopy guided dark-field multi-functional optical coherence tomography

Soonjae Kwon, Yeoreum Yoon, Bumju Kim, Won Hyuk Jang, Byungho Oh, Kee Yang Chung, and Ki Hean Kim
Biomed. Opt. Express 8(3) 1372-1381 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
    [Crossref] [PubMed]
  2. D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
    [Crossref] [PubMed]
  3. G. Y. Zhou, Z. Y. Zhang, and J. Li, “Computed assessment of pathological images on 52 case biopsies of port wine stain,” Chinese Journal of Oral and Maxillofacial Surgery 9(2), 112–115 (1999).
  4. M. Pircher, E. Goetzinger, R. Leitgeb, and C. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12(14), 3236–3244 (2004).
    [Crossref] [PubMed]
  5. M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
    [Crossref] [PubMed]
  6. S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
    [Crossref] [PubMed]
  7. G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
    [Crossref] [PubMed]
  8. D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
    [Crossref] [PubMed]
  9. M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
    [Crossref] [PubMed]
  10. K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
    [Crossref] [PubMed]
  11. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  12. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
    [Crossref]
  13. S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
    [Crossref] [PubMed]
  14. E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
    [Crossref] [PubMed]
  15. J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
    [Crossref] [PubMed]
  16. R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
    [Crossref] [PubMed]
  17. X. Shu, W. Liu, and H. F. Zhang, “A Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
    [Crossref] [PubMed]
  18. L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 107(6), 063701 (2015).
    [Crossref]
  19. H. Qin, T. Zhou, S. Yang, and D. Xing, “Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue,” Small 11(22), 2675–2686 (2015).
    [Crossref] [PubMed]
  20. L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
    [Crossref] [PubMed]
  21. H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
    [Crossref] [PubMed]
  22. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
    [Crossref] [PubMed]
  23. X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
    [Crossref] [PubMed]
  24. L. Zeng, Z. Piao, S. Huang, W. Jia, and Z. Chen, “Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation,” Opt. Express 23(24), 31026–31033 (2015).
    [Crossref] [PubMed]
  25. Y. Wang, D. Xu, S. Yang, and D. Xing, “Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector,” Biomed. Opt. Express 7(2), 279–286 (2016).
    [Crossref] [PubMed]
  26. G. He, D. Xu, H. Qin, S. Yang, and D. Xing, “In vivo cell characteristic extraction and identification by photoacoustic flow cytography,” Biomed. Opt. Express 6(10), 3748–3756 (2015).
    [Crossref] [PubMed]
  27. Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
    [Crossref] [PubMed]
  28. B. Li, H. Qin, S. Yang, and D. Xing, “In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens,” Opt. Express 22(17), 20130–20137 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (7)

G. He, D. Xu, H. Qin, S. Yang, and D. Xing, “In vivo cell characteristic extraction and identification by photoacoustic flow cytography,” Biomed. Opt. Express 6(10), 3748–3756 (2015).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref] [PubMed]

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

L. Zeng, Z. Piao, S. Huang, W. Jia, and Z. Chen, “Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation,” Opt. Express 23(24), 31026–31033 (2015).
[Crossref] [PubMed]

X. Shu, W. Liu, and H. F. Zhang, “A Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 107(6), 063701 (2015).
[Crossref]

H. Qin, T. Zhou, S. Yang, and D. Xing, “Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue,” Small 11(22), 2675–2686 (2015).
[Crossref] [PubMed]

2014 (4)

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

B. Li, H. Qin, S. Yang, and D. Xing, “In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens,” Opt. Express 22(17), 20130–20137 (2014).
[Crossref] [PubMed]

2013 (2)

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
[Crossref] [PubMed]

2012 (2)

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (1)

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

2010 (1)

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

2009 (4)

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

2008 (1)

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

2007 (1)

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

2004 (1)

2002 (1)

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

1999 (1)

G. Y. Zhou, Z. Y. Zhang, and J. Li, “Computed assessment of pathological images on 52 case biopsies of port wine stain,” Chinese Journal of Oral and Maxillofacial Surgery 9(2), 112–115 (1999).

1997 (1)

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

Andersen, P. E.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Au, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Beek, J. F.

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

Cai, L.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Chen, J.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Chen, X.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref] [PubMed]

L. Zeng, Z. Piao, S. Huang, W. Jia, and Z. Chen, “Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation,” Opt. Express 23(24), 31026–31033 (2015).
[Crossref] [PubMed]

G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
[Crossref] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Choi, B.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

de Borgie, C. A. J. M.

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Durkin, A. J.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[Crossref] [PubMed]

Galanzha, E. I.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Gao, K.

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

Glade, C. P.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

Goetzinger, E.

Gong, X.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Gu, Y.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Guo, J.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Hansen, M. K.

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

He, G.

Heldermon, C. D.

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

Hitzenberger, C.

Hu, D.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Hu, Z. Q.

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

Huang, N.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Huang, P.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Huang, S.

Huang, Z.

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

Huikeshoven, M.

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

Jacques, S. L.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Jasaitiene, D.

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

Jasiuniene, E.

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

Jemec, G. B. E.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Ji, X.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Jia, W.

L. Zeng, Z. Piao, S. Huang, W. Jia, and Z. Chen, “Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation,” Opt. Express 23(24), 31026–31033 (2015).
[Crossref] [PubMed]

G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
[Crossref] [PubMed]

Jiang, H.

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 107(6), 063701 (2015).
[Crossref]

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

Jørgensen, T. M.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Kazys, R.

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

Kelly, K. M.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

Kelly, T.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Kim, J. W.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

Koster, P. H. L.

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Leitgeb, R.

Li, B.

Li, J.

G. Y. Zhou, Z. Y. Zhang, and J. Li, “Computed assessment of pathological images on 52 case biopsies of port wine stain,” Chinese Journal of Oral and Maxillofacial Surgery 9(2), 112–115 (1999).

Li, P. C.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[Crossref] [PubMed]

Li, X.

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

Lin, R.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Linkeviciute, G.

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

Liu, C.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Liu, G.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
[Crossref] [PubMed]

Liu, W.

X. Shu, W. Liu, and H. F. Zhang, “A Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

Lu, G.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ma, Y.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Mazhar, A.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

Milner, T. E.

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

Mogensen, M.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Mulder, M. J.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

Nelson, J. S.

G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
[Crossref] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

Nie, L.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

O’Donnell, M.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[Crossref] [PubMed]

Paltauf, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Piao, Z.

Pircher, M.

Prahl, S. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Qin, H.

Qiu, H.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Rahimian, R.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

Raisutis, R.

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ren, H.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Rong, P.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Sharif, S. A.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Shen, T.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Sheng, Z.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Shu, X.

X. Shu, W. Liu, and H. F. Zhang, “A Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

Smithies, D. J.

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

Song, L.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Steenbergen, W.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

Taydas, E.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

Thrane, L.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Valiukeviciene, S.

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

van der Horst, C. M. A. M.

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

van Gemert, M. J.

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

van Gemert, M. J. C.

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

van Leeuwen, T. G.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

Viator, J. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Wang, H.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Wang, S.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Wang, T.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Wang, X.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Wang, Y.

Wei, X.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Xi, L.

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 107(6), 063701 (2015).
[Crossref]

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

Xing, D.

Xu, D.

Xue, P.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Yan, M.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Yang, L.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Yang, S.

Yao, L.

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

Yu, X.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Yuan, K. H.

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

Zeng, L.

Zhang, B.

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

Zhang, H. F.

X. Shu, W. Liu, and H. F. Zhang, “A Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Zhang, L.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Zhang, Z. Y.

G. Y. Zhou, Z. Y. Zhang, and J. Li, “Computed assessment of pathological images on 52 case biopsies of port wine stain,” Chinese Journal of Oral and Maxillofacial Surgery 9(2), 112–115 (1999).

Zhao, S.

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

Zharov, V. P.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Zheng, C.

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Zhou, G. Y.

G. Y. Zhou, Z. Y. Zhang, and J. Li, “Computed assessment of pathological images on 52 case biopsies of port wine stain,” Chinese Journal of Oral and Maxillofacial Surgery 9(2), 112–115 (1999).

Zhou, Q.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Zhou, T.

H. Qin, T. Zhou, S. Yang, and D. Xing, “Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue,” Small 11(22), 2675–2686 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 107(6), 063701 (2015).
[Crossref]

Biomed. Opt. Express (2)

Br. J. Dermatol. (2)

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[Crossref] [PubMed]

K. Gao, Z. Huang, K. H. Yuan, B. Zhang, and Z. Q. Hu, “Side-by-side comparison of photodynamic therapy and pulsed-dye laser treatment of port-wine stain birthmarks,” Br. J. Dermatol. 168(5), 1040–1046 (2013).
[Crossref] [PubMed]

Chinese Journal of Oral and Maxillofacial Surgery (1)

G. Y. Zhou, Z. Y. Zhang, and J. Li, “Computed assessment of pathological images on 52 case biopsies of port wine stain,” Chinese Journal of Oral and Maxillofacial Surgery 9(2), 112–115 (1999).

J. Am. Coll. Cardiol. (1)

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, “Imaging port wine stains by fiber optical coherence tomography,” J. Biomed. Opt. 15(3), 036020 (2010).
[Crossref] [PubMed]

X. Shu, W. Liu, and H. F. Zhang, “A Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. E. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

G. Liu, W. Jia, J. S. Nelson, and Z. Chen, “In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin,” Lasers Surg. Med. 45(10), 628–632 (2013).
[Crossref] [PubMed]

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med. 40(3), 178–182 (2008).
[Crossref] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30(2), 141–148 (2002).
[Crossref] [PubMed]

Med. Phys. (1)

X. Li, C. D. Heldermon, L. Yao, L. Xi, and H. Jiang, “High resolution functional photoacoustic tomography of breast cancer,” Med. Phys. 42(9), 5321–5328 (2015).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

M. Huikeshoven, P. H. L. Koster, C. A. J. M. de Borgie, J. F. Beek, M. J. C. van Gemert, and C. M. A. M. van der Horst, “Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment,” N. Engl. J. Med. 356(12), 1235–1240 (2007).
[Crossref] [PubMed]

Nanoscale (1)

H. Wang, C. Liu, X. Gong, D. Hu, R. Lin, Z. Sheng, C. Zheng, M. Yan, J. Chen, L. Cai, and L. Song, “In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes,” Nanoscale 6(23), 14270–14279 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol. 42(9), 1843–1847 (1997).
[Crossref] [PubMed]

Phys. Today (1)

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Small (2)

H. Qin, T. Zhou, S. Yang, and D. Xing, “Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue,” Small 11(22), 2675–2686 (2015).
[Crossref] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the photoacoustic dermoscopy system. (a) Instrument layout showing the optical paths and electrical connections. DAS, data-acquisition system; OFC, optical filter and collimator; NDF, neutral density filter; PD, photodiode; BS, beam splitter; CL, convex lens; GS, galvanometer scanner; OL, objective lens; UT, ultrasound transducer; PVDF films: polyvinylidene fluoride films; CC, coupling cup; TF, transparency films. (b) Schematic of photoacoustic scanning acquisition. SF, sound field; SA, scanning area.

Fig. 2
Fig. 2

Resolution of the photoacoustic dermoscope. (a) MAP image of the sharp edge of a bar using the PA dermoscopy system. (b) Edge-spread function (ESF) and line-spread function (LSF) of the PA dermoscopy system. (c) PA signal profile through a point source. (d) Fourier spectrum of (c).

Fig. 3
Fig. 3

Photoacoustic mapping of epidermal structure. PA maps of the human skin (a) without any treatment, (b) with gentian violet marking, and (c) with gentian violet treatment. (d) Statistics, i.e., epidermal thickness and intensity ratio of melanin (M) layer to stratum corneum (SC), from the PA maps.

Fig. 4
Fig. 4

Photoacoustic mapping of the skin with pigmentation and depigmentation epidermal structures. (a) and (b) are the PA images of the pigmented skin and the surrounding normal skin, while (c) Statistics, i.e., epidermal thickness and intensity ratio of melanin (M) layer to stratum corneum (SC), from the PA maps of (a) and (b). (d) and (e) are the PA images of the depigmented skin and the surrounding normal skin. The detection areas of the patient are shown in (f) and (g). SC, stratum corneum; M, melanin; BL, blood vessel.

Fig. 5
Fig. 5

Photoacoustic mapping of PWS skin and normal skin. (a) Photoacoustic images of a PWS lesion in the forehead. (b) Photoacoustic images of the normal skin near the PWS lesion in the forehead. The images show three consecutive cross-section PA maps along the x axis, in which the epidermis is marked with dotted lines. (c) Photograph of the PWS patient’s face. The yellow and green arrows indicate the detection areas of the normal and PWS skin, respectively.

Metrics