Abstract

An optical fiber sensor integrated microfluidic chip is presented for ultrasensitive detection of glucose. A long-period grating (LPG) inscribed in a small-diameter single-mode fiber (SDSMF) is employed as an optical refractive-index (RI) sensor. With the layer-by-layer (LbL) self-assembly technique, poly (ethylenimine) (PEI) and poly (acrylic acid) (PAA) multilayer film is deposited on the SDSMF-LPG sensor for both supporting and signal enhancement, and then a glucose oxidase (GOD) layer is immobilized on the outer layer for glucose sensing. A microfluidic chip for glucose detection is fabricated after embedding the SDSMF-LPG biosensor into the microchannel of the chip. Experimental results reveal that the SDSMF-LPG biosensor based on such a hybrid sensing film can ultrasensitively detect glucose concentration as low as 1 nM. After integration into the microfluidic chip, the detection range of the sensor is extended from 2 µM to 10 µM, and the response time is remarkablely shortened from 6 minutes to 70 seconds.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Yong Liu, Mingfu Zhao, and Lin Zhang
Opt. Express 23(25) 32429-32440 (2015)

Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Jianfeng Li, and Lin Zhang
Opt. Express 22(25) 30571-30578 (2014)

Optical surface plasmon resonance sensor modified by mutant glucose/galactose-binding protein for affinity detection of glucose molecules

Dachao Li, Jie Su, Jia Yang, Songlin Yu, Jingxin Zhang, Kexin Xu, and Haixia Yu
Biomed. Opt. Express 8(11) 5206-5217 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
    [Crossref] [PubMed]
  2. S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
    [Crossref] [PubMed]
  3. L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
    [Crossref] [PubMed]
  4. S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosens. Bioelectron. 17(1-2), 53–59 (2002).
    [Crossref] [PubMed]
  5. X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
    [Crossref] [PubMed]
  6. H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
    [Crossref] [PubMed]
  7. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  8. D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
    [Crossref] [PubMed]
  9. R. G. Blazej, P. Kumaresan, and R. A. Mathies, “Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing,” Proc. Natl. Acad. Sci. U.S.A. 103(19), 7240–7245 (2006).
    [Crossref] [PubMed]
  10. P. Labroo and Y. Cui, “Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites,” Anal. Chim. Acta 813, 90–96 (2014).
    [Crossref] [PubMed]
  11. Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
    [Crossref] [PubMed]
  12. M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
    [Crossref] [PubMed]
  13. Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
    [Crossref]
  14. F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
    [Crossref] [PubMed]
  15. A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
    [Crossref] [PubMed]
  16. R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
    [Crossref] [PubMed]
  17. B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
    [Crossref] [PubMed]
  18. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  19. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  20. J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
    [Crossref]
  21. Z. Yan, Z. Sun, K. Zhou, B. Luo, J. Li, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Numerical and experimental analysis of sensitivity-enhanced ri sensor based on ex-tfg in thin cladding fiber,” J. Lightwave Technol. 33(14), 3023–3027 (2015).
  22. M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
    [Crossref] [PubMed]
  23. Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
    [Crossref]
  24. M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
    [Crossref]
  25. I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
    [Crossref] [PubMed]
  26. M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
    [Crossref] [PubMed]
  27. Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
    [Crossref] [PubMed]
  28. P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
    [Crossref] [PubMed]
  29. D. Buenger, F. Topuz, and J. Groll, “Hydrogels in sensing applications,” Prog. Polym. Sci. 37(12), 1678–1719 (2012).
    [Crossref]
  30. P. A. Palod and V. Singh, “Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase,” Mater. Sci. Eng. C 55, 420–430 (2015).
    [Crossref] [PubMed]
  31. X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
    [Crossref] [PubMed]
  32. Y.-A. Yang and C.-H. Lin, “Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood,” Biomicrofluidics 9(2), 022402 (2015).
    [Crossref] [PubMed]

2015 (4)

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref] [PubMed]

Z. Yan, Z. Sun, K. Zhou, B. Luo, J. Li, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Numerical and experimental analysis of sensitivity-enhanced ri sensor based on ex-tfg in thin cladding fiber,” J. Lightwave Technol. 33(14), 3023–3027 (2015).

P. A. Palod and V. Singh, “Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase,” Mater. Sci. Eng. C 55, 420–430 (2015).
[Crossref] [PubMed]

Y.-A. Yang and C.-H. Lin, “Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood,” Biomicrofluidics 9(2), 022402 (2015).
[Crossref] [PubMed]

2014 (1)

P. Labroo and Y. Cui, “Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites,” Anal. Chim. Acta 813, 90–96 (2014).
[Crossref] [PubMed]

2013 (6)

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

2012 (5)

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

D. Buenger, F. Topuz, and J. Groll, “Hydrogels in sensing applications,” Prog. Polym. Sci. 37(12), 1678–1719 (2012).
[Crossref]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

2011 (4)

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
[Crossref] [PubMed]

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

2010 (2)

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
[Crossref]

2009 (1)

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

2008 (1)

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref] [PubMed]

2006 (3)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

R. G. Blazej, P. Kumaresan, and R. A. Mathies, “Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing,” Proc. Natl. Acad. Sci. U.S.A. 103(19), 7240–7245 (2006).
[Crossref] [PubMed]

2004 (1)

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

2002 (1)

S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosens. Bioelectron. 17(1-2), 53–59 (2002).
[Crossref] [PubMed]

1996 (1)

1962 (1)

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Aksay, I. A.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Al-Rubeaan, K.

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

An, Q.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

An, Q. F.

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Antonietti, M.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

Baldini, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Bharadwaj, L. M.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Bhatia, V.

Blazej, R. G.

R. G. Blazej, P. Kumaresan, and R. A. Mathies, “Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing,” Proc. Natl. Acad. Sci. U.S.A. 103(19), 7240–7245 (2006).
[Crossref] [PubMed]

Brahim, S.

S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosens. Bioelectron. 17(1-2), 53–59 (2002).
[Crossref] [PubMed]

Brenci, M.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Buenger, D.

D. Buenger, F. Topuz, and J. Groll, “Hydrogels in sensing applications,” Prog. Polym. Sci. 37(12), 1678–1719 (2012).
[Crossref]

Chan, W. K. E.

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Chen, H.

Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
[Crossref]

Chiavaioli, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Chiou, C.-C.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Chong, J. H.

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Clark, L. C.

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Cui, H.-F.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

Cui, Y.

P. Labroo and Y. Cui, “Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites,” Anal. Chim. Acta 813, 90–96 (2014).
[Crossref] [PubMed]

Deep, A.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Dong, W.-F.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Dong, Y.

Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
[Crossref]

Dostalek, J.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Ertl, P.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Franzke, J.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Giannetti, A.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Gopishetty, V.

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Groll, J.

D. Buenger, F. Topuz, and J. Groll, “Hydrogels in sensing applications,” Prog. Polym. Sci. 37(12), 1678–1719 (2012).
[Crossref]

Grunlan, J. C.

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

Gu, B.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Gu, B. B.

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Guiseppi-Elie, A.

S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosens. Bioelectron. 17(1-2), 53–59 (2002).
[Crossref] [PubMed]

Guo, J.-C.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Haile, M.

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

Hao, Y.-W.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Haryono, H.

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

He, Q.

Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
[Crossref]

He, S.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

He, S. L.

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Huang, C.-J.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Jain, S. C.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Janasek, D.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Kang, X.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Kapur, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Katz, E.

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Kumar, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Kumaresan, P.

R. G. Blazej, P. Kumaresan, and R. A. Mathies, “Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing,” Proc. Natl. Acad. Sci. U.S.A. 103(19), 7240–7245 (2006).
[Crossref] [PubMed]

Küpcü, S.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Labroo, P.

P. Labroo and Y. Cui, “Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites,” Anal. Chim. Acta 813, 90–96 (2014).
[Crossref] [PubMed]

Lai, C.-S.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Li, J.

Lin, C.-H.

Y.-A. Yang and C.-H. Lin, “Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood,” Biomicrofluidics 9(2), 022402 (2015).
[Crossref] [PubMed]

Lin, Y.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Lin, Y.-H.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Liu, F.

X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
[Crossref] [PubMed]

Liu, J.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Liu, Y.

Lu, C.

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Luo, B.

Luo, J.-D.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Luong, J. H. T.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

Lyons, C.

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Malek, F. A.

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

Manz, A.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Mathies, R. A.

R. G. Blazej, P. Kumaresan, and R. A. Mathies, “Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing,” Proc. Natl. Acad. Sci. U.S.A. 103(19), 7240–7245 (2006).
[Crossref] [PubMed]

Meng, X.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Minko, S.

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Mishra, V.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Narinesingh, D.

S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosens. Bioelectron. 17(1-2), 53–59 (2002).
[Crossref] [PubMed]

Nge, P. N.

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

Palod, P. A.

P. A. Palod and V. Singh, “Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase,” Mater. Sci. Eng. C 55, 420–430 (2015).
[Crossref] [PubMed]

Pan, T.-M.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Park, Y. T.

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

Picher, M. M.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Prescher, S.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

Pum, D.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Qi, Z.-M.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Qian, J.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Qian, J. W.

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Rao, M. K.

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Rogers, C. I.

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

Shao, L. Y.

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Sheu, F.-S.

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

Shum, P.

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Singh, N.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Singh, V.

P. A. Palod and V. Singh, “Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase,” Mater. Sci. Eng. C 55, 420–430 (2015).
[Crossref] [PubMed]

Sleytr, U. B.

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Song, J.-F.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Sun, H.-B.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Sun, J.

X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
[Crossref] [PubMed]

Sun, Y.-L.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Sun, Z.

Tam, H. Y.

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tiwari, U.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Tokarev, I.

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Tokareva, I.

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Topuz, F.

D. Buenger, F. Topuz, and J. Groll, “Hydrogels in sensing applications,” Prog. Polym. Sci. 37(12), 1678–1719 (2012).
[Crossref]

Trono, C.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Vashist, S. K.

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

Vengsarkar, A. M.

Wang, H.

Wang, J.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref] [PubMed]

Wang, S.-H.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
[Crossref] [PubMed]

Wang, Y.

Z. Yan, Z. Sun, K. Zhou, B. Luo, J. Li, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Numerical and experimental analysis of sensitivity-enhanced ri sensor based on ex-tfg in thin cladding fiber,” J. Lightwave Technol. 33(14), 3023–3027 (2015).

Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
[Crossref]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Woolley, A. T.

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

Wu, C.

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Wu, H.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Wu, M.-H.

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

Yan, Z.

Yang, R.-Z.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Yang, Y.-A.

Y.-A. Yang and C.-H. Lin, “Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood,” Biomicrofluidics 9(2), 022402 (2015).
[Crossref] [PubMed]

Yang, Y.-H.

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

Yin, M.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Yin, M. J.

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Yohana, A.

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Yu, Y.-S.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Yuan, J.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

Zhang, A.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Zhang, A. P.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Zhang, K.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

Zhang, L.

Zhang, W.-D.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

Zhang, W.-Y.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Zhang, X.-L.

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Zhang, Y.-F.

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

Zhao, M.

Zhao, Q.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Zhao, W.

Zheng, D.

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

Zheng, X.

X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
[Crossref] [PubMed]

Zhou, K.

Zhu, Y.

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Adv. Mater. (1)

I. Tokarev, I. Tokareva, V. Gopishetty, E. Katz, and S. Minko, “Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles,” Adv. Mater. 22(12), 1412–1416 (2010).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

P. Labroo and Y. Cui, “Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites,” Anal. Chim. Acta 813, 90–96 (2014).
[Crossref] [PubMed]

S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Technology behind commercial devices for blood glucose monitoring in diabetes management: A review,” Anal. Chim. Acta 703(2), 124–136 (2011).
[Crossref] [PubMed]

Anal. Methods (1)

M. J. Yin, B. B. Gu, J. W. Qian, A. P. Zhang, Q. F. An, and S. L. He, “Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution,” Anal. Methods 4(5), 1292–1297 (2012).
[Crossref]

Analyst (Lond.) (1)

M. J. Yin, C. Wu, L. Y. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

X. Wang, F. Liu, X. Zheng, and J. Sun, “Water-enabled self-healing of polyelectrolyte multilayer coatings,” Angew. Chem. Int. Ed. Engl. 50(48), 11378–11381 (2011).
[Crossref] [PubMed]

Ann. N. Y. Acad. Sci. (1)

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Biomicrofluidics (1)

Y.-A. Yang and C.-H. Lin, “Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood,” Biomicrofluidics 9(2), 022402 (2015).
[Crossref] [PubMed]

Biosens. Bioelectron. (5)

S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosens. Bioelectron. 17(1-2), 53–59 (2002).
[Crossref] [PubMed]

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

H.-F. Cui, K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong, “Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer,” Biosens. Bioelectron. 46, 113–118 (2013).
[Crossref] [PubMed]

Y.-H. Lin, S.-H. Wang, M.-H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C.-C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron. 43, 328–335 (2013).
[Crossref] [PubMed]

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Chem. Rev. (2)

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: Facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Lab Chip (1)

M. M. Picher, S. Küpcü, C.-J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip,” Lab Chip 13(9), 1780–1789 (2013).
[Crossref] [PubMed]

Langmuir (1)

R.-Z. Yang, W.-F. Dong, X. Meng, X.-L. Zhang, Y.-L. Sun, Y.-W. Hao, J.-C. Guo, W.-Y. Zhang, Y.-S. Yu, J.-F. Song, Z.-M. Qi, and H.-B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Macromolecules (1)

Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, “Super gas barrier of all-polymer multilayer thin films,” Macromolecules 44(6), 1450–1459 (2011).
[Crossref]

Mater. Sci. Eng. C (1)

P. A. Palod and V. Singh, “Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase,” Mater. Sci. Eng. C 55, 420–430 (2015).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Nature (2)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229(1–6), 65–69 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

R. G. Blazej, P. Kumaresan, and R. A. Mathies, “Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing,” Proc. Natl. Acad. Sci. U.S.A. 103(19), 7240–7245 (2006).
[Crossref] [PubMed]

Prog. Polym. Sci. (1)

D. Buenger, F. Topuz, and J. Groll, “Hydrogels in sensing applications,” Prog. Polym. Sci. 37(12), 1678–1719 (2012).
[Crossref]

Sens. Actuators B Chem. (1)

Y. Wang, Q. He, Y. Dong, and H. Chen, “In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose,” Sens. Actuators B Chem. 145(1), 553–560 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic design of the optical fiber biosensor integrated microfluidic chip: ① are two inlets, ② is outlet, ③ is a spiral mixture, ④ are optical fibers and ⑤ is the embedded LPG sensor. (b) The mode coupling and optical resonance in the LPG biosensor. (c) Working mechanism of the multilayer film for glucose sensing and signal enhancement.
Fig. 2
Fig. 2 Transmission spectrum of the fabricated SDSMF-LPG. The inset shows the response of its deepest spectral dip to the RI changes of surrounding medium.
Fig. 3
Fig. 3 (a) The layer-by-layer self-assembly scheme for the preparation of multilayer sensing film; (b) Thickness growth of the (PEI/PAA)9(PEI/GOD)1 multilayer film. The inset shows the AFM image of (PEI/PAA)9PEI multilayer film.
Fig. 4
Fig. 4 Transmission spectra of the SDSMF-LPG sensor before and after depositing the sensing film.
Fig. 5
Fig. 5 (a) Response of the SDSMF-LPG biosensor to different glucose concentrations. The inset shows the measured transmission spectra; (b) the measured dynamic response of the biosensor.
Fig. 6
Fig. 6 Photos of the SU-8 master mould for microfluidic chip fabrication (a) and its mixer part (b); the photo of real microfluidic chip fabricated by casting PDMS on the SU-8 mould and then sealed with glass slide by using O2 plasma (c).
Fig. 7
Fig. 7 (a) Response of the microfluidic chip to different glucose concentrations. The inset shows the measured transmission spectra; (b) the measured dynamic response of the glucose microfluidic chip.
Fig. 8
Fig. 8 AFM images of (PEI/PAA)9 (a), (PEI/PAA)9PEI (b) and (PEI/PAA)9(PEI/GOD)1 (c) multilayer films: the top images are the surface morphologies and the bottom images are their 3D presentations.
Fig. 9
Fig. 9 Laser scanning confocal microscopy images and profile parameters of the SU-8 mold for the spiral mixer in the microfluidic chip.
Fig. 10
Fig. 10 Experimental results and deviation analysis of the spectral responses of the LPG biosensor integrated microfluidic chip to the change of glucose concentrations in three tests.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=[ n eff (λ) n clad i (λ)]Λ

Metrics