Abstract

While the majority of photoacoustic imaging systems used custom-made transducer arrays, commercially-available linear transducer arrays hold the benefits of affordable price, handheld convenience and wide clinical recognition. They are not widely used in photoacoustic imaging primarily because of the poor elevation resolution. Here, without modifying the imaging geometry and system, we propose addressing this limitation purely through image reconstruction. Our approach is based on the integration of two advanced image reconstruction techniques: focal-line-based three-dimensional image reconstruction and coherent weighting. We first numerically validated our approach through simulation and then experimentally tested it in phantom and in vivo. Both simulation and experimental results proved that the method can significantly improve the elevation resolution (up to 4 times in our experiment) and enhance object contrast.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadening the detection view of 2D photoacoustic tomography using two linear array transducers

Weihang Shu, Min Ai, Tim Salcudean, Robert Rohling, Purang Abolmaesumi, and Shuo Tang
Opt. Express 24(12) 12755-12768 (2016)

Three-dimensional photoacoustic imaging via scanning a one dimensional linear unfocused ultrasound array

Yi Tan, Kaiye Xia, Qiushi Ren, and Changhui Li
Opt. Express 25(7) 8022-8028 (2017)

Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions

Yuehang Wang, Depeng Wang, Yumiao Zhang, Jumin Geng, Jonathan F. Lovell, and Jun Xia
Opt. Lett. 41(1) 127-130 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. D. Wang, Y. Wu, and J. Xia, “Review on photoacoustic imaging of the brain using nanoprobes,” Neurophotonics 3(1), 010901 (2016).
    [Crossref] [PubMed]
  4. J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
    [Crossref] [PubMed]
  5. J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
    [Crossref] [PubMed]
  6. M. Schwarz, A. Buehler, and V. Ntziachristos, “Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning,” J. Biophotonics 8(1-2), 60–70 (2015).
    [Crossref] [PubMed]
  7. Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
    [Crossref] [PubMed]
  8. M.-L. Li, “Adaptive photoacoustic imaging using the Mallart-Fink focusing factor,” in Biomedical Optics (BiOS)2008, (International Society for Optics and Photonics, 2008), 685627.
  9. R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound‐speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,” J. Acoust. Soc. Am. 96(6), 3721–3732 (1994).
    [Crossref]
  10. J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).
  11. J. A. Jensen, “Field: A program for simulating ultrasound systems,” in 10th Nordic Baltic Conference on Biomedical Imaging, Vol. 4, Supplement 1, Part 1: 351–353, (Citeseer, 1996)
  12. J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992).
    [Crossref] [PubMed]
  13. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
    [Crossref] [PubMed]
  14. H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
    [Crossref] [PubMed]
  15. T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
    [Crossref] [PubMed]
  16. Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
    [Crossref] [PubMed]

2016 (3)

D. Wang, Y. Wu, and J. Xia, “Review on photoacoustic imaging of the brain using nanoprobes,” Neurophotonics 3(1), 010901 (2016).
[Crossref] [PubMed]

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

2015 (2)

M. Schwarz, A. Buehler, and V. Ntziachristos, “Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning,” J. Biophotonics 8(1-2), 60–70 (2015).
[Crossref] [PubMed]

J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
[Crossref] [PubMed]

2014 (1)

T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
[Crossref] [PubMed]

2013 (1)

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

2012 (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

2011 (1)

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

2009 (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

2004 (1)

1994 (1)

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound‐speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,” J. Acoust. Soc. Am. 96(6), 3721–3732 (1994).
[Crossref]

1992 (1)

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992).
[Crossref] [PubMed]

Aguirre, A.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

Bossy, E.

J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
[Crossref] [PubMed]

Buehler, A.

M. Schwarz, A. Buehler, and V. Ntziachristos, “Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning,” J. Biophotonics 8(1-2), 60–70 (2015).
[Crossref] [PubMed]

Caballero, M. Á. A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Chassot, J.-M.

J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
[Crossref] [PubMed]

Chen, S.

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

Chitgupi, U.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Cook, T. R.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Dima, A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Fink, M.

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound‐speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,” J. Acoust. Soc. Am. 96(6), 3721–3732 (1994).
[Crossref]

Furuyama, T.

T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
[Crossref] [PubMed]

Gateau, J.

J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
[Crossref] [PubMed]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Geng, J.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

Gesnik, M.

J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
[Crossref] [PubMed]

Greenleaf, J. F.

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

Guo, Z.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Jensen, J. A.

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992).
[Crossref] [PubMed]

Kobayashi, N.

T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
[Crossref] [PubMed]

Kushiya, T.

T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
[Crossref] [PubMed]

Li, M.-L.

Li, P.-C.

Liao, C.-K.

Lovell, J. F.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

Mallart, R.

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound‐speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,” J. Acoust. Soc. Am. 96(6), 3721–3732 (1994).
[Crossref]

Maslov, K.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

Ntziachristos, V.

M. Schwarz, A. Buehler, and V. Ntziachristos, “Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning,” J. Biophotonics 8(1-2), 60–70 (2015).
[Crossref] [PubMed]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Percival, C.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

Satoh, K.

T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
[Crossref] [PubMed]

Schwarz, M.

M. Schwarz, A. Buehler, and V. Ntziachristos, “Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning,” J. Biophotonics 8(1-2), 60–70 (2015).
[Crossref] [PubMed]

Song, P.

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

Svendsen, N. B.

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992).
[Crossref] [PubMed]

Urban, M. W.

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

Wang, D.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

D. Wang, Y. Wu, and J. Xia, “Review on photoacoustic imaging of the brain using nanoprobes,” Neurophotonics 3(1), 010901 (2016).
[Crossref] [PubMed]

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Wang, Y.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

Wu, Y.

D. Wang, Y. Wu, and J. Xia, “Review on photoacoustic imaging of the brain using nanoprobes,” Neurophotonics 3(1), 010901 (2016).
[Crossref] [PubMed]

Xia, J.

D. Wang, Y. Wu, and J. Xia, “Review on photoacoustic imaging of the brain using nanoprobes,” Neurophotonics 3(1), 010901 (2016).
[Crossref] [PubMed]

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

Zhang, Y.

Y. Wang, D. Wang, Y. Zhang, J. Geng, J. F. Lovell, and J. Xia, “Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions,” Opt. Lett. 41(1), 127–130 (2016).
[Crossref] [PubMed]

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Zhao, H.

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Zhu, Q.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound‐speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,” J. Acoust. Soc. Am. 96(6), 3721–3732 (1994).
[Crossref]

J. Am. Chem. Soc. (1)

T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, “Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm,” J. Am. Chem. Soc. 136(2), 765–776 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16, 090505 (2011).

J. Gateau, M. Gesnik, J.-M. Chassot, and E. Bossy, “Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array,” J. Biomed. Opt. 20(5), 056004 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

M. Schwarz, A. Buehler, and V. Ntziachristos, “Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning,” J. Biophotonics 8(1-2), 60–70 (2015).
[Crossref] [PubMed]

Med. Phys. (1)

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Neurophotonics (1)

D. Wang, Y. Wu, and J. Xia, “Review on photoacoustic imaging of the brain using nanoprobes,” Neurophotonics 3(1), 010901 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Theranostics (1)

Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, and J. F. Lovell, “A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging,” Theranostics 6(5), 688–697 (2016).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Shear wave speed measurement using an unfocused ultrasound beam,” Ultrasound Med. Biol. 38(9), 1646–1655 (2012).
[Crossref] [PubMed]

Other (2)

M.-L. Li, “Adaptive photoacoustic imaging using the Mallart-Fink focusing factor,” in Biomedical Optics (BiOS)2008, (International Society for Optics and Photonics, 2008), 685627.

J. A. Jensen, “Field: A program for simulating ultrasound systems,” in 10th Nordic Baltic Conference on Biomedical Imaging, Vol. 4, Supplement 1, Part 1: 351–353, (Citeseer, 1996)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the 2D reconstruction and 3D FL reconstruction concepts. A: point of reconstruction. A′: projection of A on the imaging plane. B: an artifact point induced by 2D reconstruction (AF = BF). O: center of the transducer element. F: intersection of focal line and OA′.
Fig. 2
Fig. 2 Schematic of the PAT system and imaging geometry.
Fig. 3
Fig. 3 Reconstructed images of numerical simulation. (A) 2D reconstructed image. (B) FL reconstructed image. (C) CWFL reconstructed image.
Fig. 4
Fig. 4 Photograph and depth-encoded MAP of reconstructed images for the three-tube experiment (MAP was performed along the axial direction). (A) Photograph of the three-tube phantom. (B) PA image reconstructed with 2D reconstruction method. (C) PA image reconstructed with the FL reconstruction method. (D) PA image reconstructed with the CWFL reconstruction method.
Fig. 5
Fig. 5 Photograph and depth-encoded MAP of reconstructed images for the complex tube experiment (MAP was performed along the axial direction). (A) Photograph of the complex tube phantom. (B) PA image reconstructed with 2D reconstruction method. (C) PA image reconstructed with the FL reconstruction method. (D) PA image reconstructed with the CWFL reconstruction method.
Fig. 6
Fig. 6 MAP of reconstructed images from human-wrist experiments (MAP of C-H was performed along the axial direction over 12 mm range). Subject 1’s wrist was place at 40 mm away from the transducer surface. Subject 2’ wrist was placed at 47 mm away from the transducer surface. The vessels shown in C to H are 2~14 mm underneath the skin surface. (A-B) Photographs of the wrists of subject 1 and subject 2, respectively (the red dashed box indicates the imaging region). (C-D) Images reconstructed with the 2D method. (E-F) Images reconstructed with the FL method. (G-H) Images reconstructed with the CWFL method. The elevation resolution was calculated along the dashed lines.

Tables (1)

Tables Icon

Table 1 Comparison of different methods

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F L i,j ( r )= j=1 J i=1 I F ( i,j ) (t) | t= r / c .
t= r c =( d1 + d2 )/c.
CW F i,j ( r )= | j=1 J i=1 I F i,j ( t ) | 2 /[J×I j=1 J i=1 I | F i,j ( t ) | 2 ] | t= r /c

Metrics