Abstract

Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo

Kaicheng Liang, Zhao Wang, Osman O. Ahsen, Hsiang-Chieh Lee, Benjamin M. Potsaid, Vijaysekhar Jayaraman, Alex Cable, Hiroshi Mashimo, Xingde Li, and James G. Fujimoto
Optica 5(1) 36-43 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
    [Crossref] [PubMed]
  2. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
    [Crossref] [PubMed]
  3. M. A. Konerding, A. J. Miodonski, and A. Lametschwandtner, “Microvascular corrosion casting in the study of tumor vascularity: a review,” Scanning Microsc. 9(4), 1233–1244 (1995).
    [PubMed]
  4. H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
    [Crossref] [PubMed]
  5. R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2(1), 11–18 (2002).
    [Crossref] [PubMed]
  6. J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
    [Crossref] [PubMed]
  7. W. Drexler and J. G. Fujimoto, “Optical Coherence Tomography: Technology and Applications (Biological and Medical Physics, Biomedical Engineering),” Springer (2008).
  8. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [Crossref] [PubMed]
  9. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
    [Crossref] [PubMed]
  10. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  11. R. K. K. Wang, X. Q. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
    [Crossref]
  12. V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41(1), 258–271 (2002).
    [Crossref] [PubMed]
  13. H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14(3), 030512 (2009).
    [Crossref] [PubMed]
  14. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
    [Crossref] [PubMed]
  15. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
    [Crossref] [PubMed]
  16. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  17. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  18. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  19. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  20. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
    [Crossref] [PubMed]
  21. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  22. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref] [PubMed]
  23. Y. Jia, L. An, and R. K. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
    [Crossref] [PubMed]
  24. Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
    [Crossref] [PubMed]
  25. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
    [Crossref] [PubMed]
  26. H. Wang, U. Baran, and R. K. Wang, “In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography,” J. Biophotonics 8(3), 265–272 (2015).
    [Crossref] [PubMed]
  27. U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics 8(1-2), 46–51 (2015).
    [Crossref] [PubMed]
  28. Y. Li, U. Baran, and R. K. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
    [Crossref] [PubMed]
  29. S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
    [Crossref] [PubMed]
  30. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
    [Crossref] [PubMed]
  31. J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
    [Crossref] [PubMed]
  32. H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
    [Crossref] [PubMed]
  33. S. Yousefi, Z. W. Zhi, and R. K. K. Wang, “Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
    [Crossref]
  34. P. H. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
    [Crossref]
  35. R. S. Fawcett, S. Linford, and D. L. Stulberg, “Nail abnormalities: clues to systemic disease,” Am. Fam. Physician 69(6), 1417–1424 (2004).
    [PubMed]
  36. M. Williams, “Examining the fingernails when evaluating presenting symptoms in elderly patients,” Retrieved March 20, 2011 (2009).
  37. A. Zhang, Q. Zhang, and R. K. Wang, “Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography,” Biomed. Opt. Express 6(10), 4130–4143 (2015).
    [Crossref] [PubMed]
  38. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  39. J. Xu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [Crossref] [PubMed]

2015 (6)

H. Wang, U. Baran, and R. K. Wang, “In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography,” J. Biophotonics 8(3), 265–272 (2015).
[Crossref] [PubMed]

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics 8(1-2), 46–51 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
[Crossref] [PubMed]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, and R. K. Wang, “Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography,” Biomed. Opt. Express 6(10), 4130–4143 (2015).
[Crossref] [PubMed]

2014 (4)

J. Xu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
[Crossref] [PubMed]

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

2013 (4)

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

2011 (1)

S. Yousefi, Z. W. Zhi, and R. K. K. Wang, “Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref]

2010 (4)

2009 (1)

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14(3), 030512 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2005 (1)

P. H. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

2004 (3)

R. S. Fawcett, S. Linford, and D. L. Stulberg, “Nail abnormalities: clues to systemic disease,” Am. Fam. Physician 69(6), 1417–1424 (2004).
[PubMed]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

2003 (3)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

2002 (3)

R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2(1), 11–18 (2002).
[Crossref] [PubMed]

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41(1), 258–271 (2002).
[Crossref] [PubMed]

2001 (2)

R. K. K. Wang, X. Q. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[Crossref]

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

2000 (1)

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

1999 (1)

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

1995 (1)

M. A. Konerding, A. J. Miodonski, and A. Lametschwandtner, “Microvascular corrosion casting in the study of tumor vascularity: a review,” Scanning Microsc. 9(4), 1233–1244 (1995).
[PubMed]

An, L.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Y. Jia, L. An, and R. K. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

Artal, P.

Baluk, P.

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Baran, U.

H. Wang, U. Baran, and R. K. Wang, “In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography,” J. Biophotonics 8(3), 265–272 (2015).
[Crossref] [PubMed]

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics 8(1-2), 46–51 (2015).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

Biedermann, B. R.

Bouma, B. E.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Brown, E. B.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Cable, A.

Cable, A. E.

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Campbell, F.

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Campbell, R. B.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Carmeliet, P.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Choi, H.

Choyke, P. L.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

Clark, S.

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Drexler, W.

Dunn, A. K.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Eigenwillig, C. M.

Elder, J. B.

Enfield, J.

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Fawcett, R. S.

R. S. Fawcett, S. Linford, and D. L. Stulberg, “Nail abnormalities: clues to systemic disease,” Am. Fam. Physician 69(6), 1417–1424 (2004).
[PubMed]

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Fernández, E. J.

Francis, P.

Fujimoto, J. G.

Fukumura, D.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Gruber, A.

Grulkowski, I.

Ha, J.

Hanson, S. R.

Hashizume, H.

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Hermann, B.

Herrick, A. L.

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Huang, Y.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Huber, R.

Hurst, S.

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Jacques, S. L.

Jain, R. K.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Jang, J.

Jang, W.

Jayaraman, V.

Jayson, M. I.

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Jia, Y.

Y. Jia, L. An, and R. K. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[Crossref] [PubMed]

Jiang, J.

Jones, T. A.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Kazmi, S. M. S.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Khurana, M.

King, T. A.

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Klein, T.

Kolb, J. P.

Konerding, M. A.

M. A. Konerding, A. J. Miodonski, and A. Lametschwandtner, “Microvascular corrosion casting in the study of tumor vascularity: a review,” Scanning Microsc. 9(4), 1233–1244 (1995).
[PubMed]

Kubach, S.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Kufner, C. L.

Laham, R. J.

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

Lametschwandtner, A.

M. A. Konerding, A. J. Miodonski, and A. Lametschwandtner, “Microvascular corrosion casting in the study of tumor vascularity: a review,” Scanning Microsc. 9(4), 1233–1244 (1995).
[PubMed]

Laron, M.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Leahy, M. J.

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Lee, S.

Leiner, T.

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Leung, M. K. K.

Li, Y.

Y. Li, U. Baran, and R. K. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

Lim, J.

Linford, S.

R. S. Fawcett, S. Linford, and D. L. Stulberg, “Nail abnormalities: clues to systemic disease,” Am. Fam. Physician 69(6), 1417–1424 (2004).
[PubMed]

Liu, J. J.

Luk, T. W. H.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Lynch, M.

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Ma, Z.

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Mariampillai, A.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

McDonald, D. M.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

McLean, J. W.

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Miodonski, A. J.

M. A. Konerding, A. J. Miodonski, and A. Lametschwandtner, “Microvascular corrosion casting in the study of tumor vascularity: a review,” Scanning Microsc. 9(4), 1233–1244 (1995).
[PubMed]

Moore, T.

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Morikawa, S.

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Moriyama, E. H.

Munce, N. R.

Neubauer, A. S.

O’Connell, M. L.

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Oh, W. Y.

Park, J. H.

Park, Y.

Parthasarthy, A. B.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Pearlman, J. D.

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Post, M.

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

Potsaid, B.

Prieto, P. M.

Qin, J.

Ramsay, B.

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Roberge, S.

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Rollins, A. M.

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14(3), 030512 (2009).
[Crossref] [PubMed]

Sattmann, H.

Sharma, U.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Shi, L.

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics 8(1-2), 46–51 (2015).
[Crossref] [PubMed]

Simons, M.

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

Song, N. E.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Standish, B. A.

Stulberg, D. L.

R. S. Fawcett, S. Linford, and D. L. Stulberg, “Nail abnormalities: clues to systemic disease,” Am. Fam. Physician 69(6), 1417–1424 (2004).
[PubMed]

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Tearney, G. J.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Thurston, G.

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Tomlins, P. H.

P. H. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Tsia, K. K.

Tsuzuki, Y.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Tuchin, V. V.

Unterhuber, A.

Vitkin, I. A.

Vuong, B.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Wang, H.

H. Wang, U. Baran, and R. K. Wang, “In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography,” J. Biophotonics 8(3), 265–272 (2015).
[Crossref] [PubMed]

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14(3), 030512 (2009).
[Crossref] [PubMed]

Wang, L. V.

J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
[Crossref] [PubMed]

Wang, R.

P. H. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Wang, R. K.

Wang, R. K. K.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

S. Yousefi, Z. W. Zhi, and R. K. K. Wang, “Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref]

Y. Jia, L. An, and R. K. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[Crossref] [PubMed]

R. K. K. Wang, X. Q. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[Crossref]

Wei, X.

Weissleder, R.

R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2(1), 11–18 (2002).
[Crossref] [PubMed]

Wieser, W.

Wilson, B. C.

Wilson, D. J.

Wong, K. K.

Xu, J.

Xu, L.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Xu, X.

Xu, X. Q.

Yang, V. X. D.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
[Crossref] [PubMed]

Yousefi, S.

S. Yousefi, Z. W. Zhi, and R. K. K. Wang, “Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref]

Yu, H.

Yu, L.

Zafar, H.

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Zhang, A.

Zhang, C.

Zhang, Q.

A. Zhang, Q. Zhang, and R. K. Wang, “Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography,” Biomed. Opt. Express 6(10), 4130–4143 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Zhang, T.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Zhi, Z. W.

S. Yousefi, Z. W. Zhi, and R. K. K. Wang, “Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref]

Am. Fam. Physician (1)

R. S. Fawcett, S. Linford, and D. L. Stulberg, “Nail abnormalities: clues to systemic disease,” Am. Fam. Physician 69(6), 1417–1424 (2004).
[PubMed]

Am. J. Pathol. (1)

H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

Curr. Pharm. Des. (1)

J. D. Pearlman, R. J. Laham, M. Post, T. Leiner, and M. Simons, “Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis,” Curr. Pharm. Des. 8(16), 1467–1496 (2002).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Yousefi, Z. W. Zhi, and R. K. K. Wang, “Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref]

J. Biomed. Opt. (7)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14(3), 030512 (2009).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Y. Jia, L. An, and R. K. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

J. Biophotonics (2)

H. Wang, U. Baran, and R. K. Wang, “In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography,” J. Biophotonics 8(3), 265–272 (2015).
[Crossref] [PubMed]

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics 8(1-2), 46–51 (2015).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Microvasc. Res. (1)

S. Clark, F. Campbell, T. Moore, M. I. Jayson, T. A. King, and A. L. Herrick, “Laser Doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis,” Microvasc. Res. 57(3), 284–291 (1999).
[Crossref] [PubMed]

Nat. Med. (2)

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2(1), 11–18 (2002).
[Crossref] [PubMed]

Neurophotonics (1)

J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

PLoS One (1)

Y. Li, U. Baran, and R. K. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

Scanning Microsc. (1)

M. A. Konerding, A. J. Miodonski, and A. Lametschwandtner, “Microvascular corrosion casting in the study of tumor vascularity: a review,” Scanning Microsc. 9(4), 1233–1244 (1995).
[PubMed]

Skin Res. Technol. (1)

H. Zafar, J. Enfield, M. L. O’Connell, B. Ramsay, M. Lynch, and M. J. Leahy, “Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography,” Skin Res. Technol. 20(2), 141–146 (2014).
[Crossref] [PubMed]

Other (2)

W. Drexler and J. G. Fujimoto, “Optical Coherence Tomography: Technology and Applications (Biological and Medical Physics, Biomedical Engineering),” Springer (2008).

M. Williams, “Examining the fingernails when evaluating presenting symptoms in elderly patients,” Retrieved March 20, 2011 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of dual-mode OCT-based angiography system for scalable wide-field imaging. SLD: superluminescent diode, PC: polarization controller, Col: collimator, L1-L3: lenses of different specifications, M: mirror, GM: galvanometric mirrors, Ob: objective lens, G: grating.
Fig. 2
Fig. 2 Performance test of the proposed system using a 1951 USAF test target. (a), wide-field en face image of the test target and (b) the corresponding en face image using zoom-in scanning, along with a line intensity profile at the right side. (c) en face image of the test target produced by the high-resolution small FOV imaging mode, along with a line intensity profile at the right side. (d) System sensitivity roll-off measurement of the wide field OCT system.
Fig. 3
Fig. 3 Proposed OCT/OMAG system provides unprecedented FOV imaging of multiple fingers in one single 3D scan. (a) Photograph of the middle finger and ring finger with a ruler placed below. (b) The en face MIP vascular image of the two fingers with a 30 × 25 mm2 FOV. (c) The corresponding 3D rendered structural image (grey color) overlaid with blood vascular networks (orange color). PNF: proximal nail fold, C: cuticle, NBD: nail body, DE: distal edge, LNF: lateral nail folds.
Fig. 4
Fig. 4 (a) The structural image (a) and blood flow image (b) in nail fold as indicated by the white-dashed line in Fig. 3(c). NP: nail plate, NB: nail bed, LNF: lateral nail folds.
Fig. 5
Fig. 5 Proposed system provides detailed visualization of anatomical features of both structure and blood flow within one whole signal in one scan. (a) The zoomed-in en face MIP vascular image of the ring fingers with 18 × 18 mm2 FOV. (b) The corresponding 3D rendered structural image (grey color) overlaid with blood vascular networks (orange color). The structural image (c) and blood flow image (d) are obtained from a position of proximal nail fold as indicated by the green dashed line in (b). The structural image (e) and blood flow image (f) are from nail fold beds as indicated by the red dashed line in (b). S: skin, NP: nail plate, NB: nail bed.
Fig. 6
Fig. 6 High resolution mode of the system provides detailed visualization of tissue structures and vessel networks including capillary vessels. (a) The en face MIP vascular image at the junction area (blue dashed box in Fig. 4(a)) of the ring fingers with a FOV of 3.0 × 4.5 mm2. (b) The corresponding 3D rendered structural image (grey color) overlaid with blood flow vascular networks (orange color). The structural image (c) and blood flow image (d) are obtained from a position of proximal nail fold as indicated by the green dashed line. E: epidermis, D: dermis, NM: nail matrix, NR: nail root, NB: nail bed.
Fig. 7
Fig. 7 Wide field imaging provides an opportunity to image whole brain in mouse with just one 3D scan. (a) 3D rendered structural image (grey color) overlaid with vascular networks (orange color) of the whole brain in a mouse with 20 × 20 mm2 FOV by using the wide-field imaging mode. Corresponding structural image (b) and en face MIP vascular image (c) of the whole brain in mouse, respectively. (d) Zoomed-in en face MIP vascular image of the area as indicated in the red dashed box in (c) with 8.5 × 8.5 mm2 FOV captured by wide-field mode. (e) The en face MIP vascular image for the region of the green dashed box in (d) with 3 × 3 mm2 FOV captured by the high-resolution imaging mode. ICV: inferior cerebral vein, SSS: superior sagittal sinus, CS: confluence of sinuses, TS: transverse sinus, MCA: middle cerebral artery, ACA: anterior cerebral artery.
Fig. 8
Fig. 8 Proposed system is capable of providing detailed anatomical features of both structure and vascular information in mouse brain. (a) Representative B-scan structural image and (b) the corresponding blood flow image of the mouse brain at the position indicated by the green dashed line in Fig. 7(a) using wide-field mode. (c) and (d) are the same as that of (a) and (b), but from high-resolution FOV mode, captured from a position indicated by the red dashed line in Fig. 7(e). The red arrows point to the blood vessels in meninges. S: skull, C: cortex, cc: corpus callosum, alv: alveus of hippocampus, SO: stratum oriens, M: meninges.

Metrics