Abstract

Transdermal drug-delivery systems (TDDS) have been a growing field in drug delivery because of their advantages over parenteral and oral administration. Recent studies illustrate that microneedles (MNs) can effectively penetrate through the stratum corneum barrier to facilitate drug delivery. However, the temporal effects on skin and drug diffusion are difficult to investigate in vivo. In this study, we used optical coherence tomography (OCT) to observe the process by which MNs dissolve and to investigate the temporal effects on mouse skin induced by MNs, including the morphological and vascular changes. Moreover, the recovery process of the skin was observed with OCT. Additionally, we proposed a method to observe drug delivery by estimation of cross-correlation relationship between sequential 2D OCT images obtained at the same location, reflecting the variation in the backscattered intensity due to the diffusion of the rhodamine molecules encapsulated in MNs. Our observations supported the hypothesis that the temporal effects on skin due to MNs, the dissolution of MNs, and the drug diffusion process can be quantitatively evaluated with OCT. The results showed that OCT can be a potential tool for in vivo monitoring of effects and outcomes when MNs are used as a TDDS.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

Mohesh Moothanchery, Razina Z. Seeni, Chenjie Xu, and Manojit Pramanik
Biomed. Opt. Express 8(12) 5483-5492 (2017)

Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography

Chih-Hsun Yang, Meng-Tsan Tsai, Su-Chin Shen, Chau Yee Ng, and Shih-Ming Jung
Biomed. Opt. Express 5(11) 3949-3959 (2014)

Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography

Meng-Tsan Tsai, Feng-Yu Chang, Cheng-Kuang Lee, Cihun-Siyong Alex Gong, Yu-Xiang Lin, Jiann-Der Lee, Chih-Hsun Yang, and Hao-Li Liu
Biomed. Opt. Express 5(7) 2009-2022 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. L. Brunton, B. Chabner, and B. Knollman, Goodman & Gilman’s the Pharmacological Basis of Therapeutics (McGraw-Hill Medical New York, 2011) vol. 12, pp. 17–41.
  2. R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
    [Crossref] [PubMed]
  3. J. Yu and Y. W. Chien, “Pulmonary drug delivery: physiologic and mechanistic aspects,” Crit. Rev. Ther. Drug Carrier Syst. 14(4), 395–453 (1997).
    [Crossref] [PubMed]
  4. B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
    [Crossref] [PubMed]
  5. S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
    [Crossref] [PubMed]
  6. K. van der Maaden, W. Jiskoot, and J. Bouwstra, “Microneedle technologies for (trans)dermal drug and vaccine delivery,” J. Control. Release 161(2), 645–655 (2012).
    [Crossref] [PubMed]
  7. S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
    [Crossref] [PubMed]
  8. J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
    [Crossref] [PubMed]
  9. M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Adv. Drug Deliv. Rev. 56(5), 581–587 (2004).
    [Crossref] [PubMed]
  10. J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
    [Crossref] [PubMed]
  11. R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
    [Crossref] [PubMed]
  12. S. F. Lahiji, M. Dangol, and H. Jung, “A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery,” Sci. Rep. 5, 7914 (2015).
    [Crossref] [PubMed]
  13. I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
    [Crossref]
  14. T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
    [Crossref] [PubMed]
  15. R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
    [Crossref] [PubMed]
  16. S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
    [Crossref] [PubMed]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  18. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
    [Crossref]
  19. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  20. J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
    [Crossref] [PubMed]
  21. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  22. D. Nankivil, A. H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
    [Crossref] [PubMed]
  23. C. H. Yang, M. T. Tsai, S. C. Shen, C. Y. Ng, and S. M. Jung, “Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography,” Biomed. Opt. Express 5(11), 3949–3959 (2014).
    [Crossref] [PubMed]
  24. S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
    [Crossref] [PubMed]
  25. W. J. Choi, Z. Zhi, and R. K. Wang, “In vivo OCT microangiography of rodent iris,” Opt. Lett. 39(8), 2455–2458 (2014).
    [Crossref] [PubMed]
  26. P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
    [PubMed]
  27. Y.-J. Hong, S. Makita, S. Sugiyama, and Y. Yasuno, “Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction,” Biomed. Opt. Express 6(1), 225–243 (2015).
    [Crossref] [PubMed]
  28. S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
    [Crossref] [PubMed]
  29. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
    [Crossref] [PubMed]
  30. E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
    [Crossref] [PubMed]
  31. B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G.-O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
    [Crossref] [PubMed]
  32. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
    [Crossref] [PubMed]
  33. M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007).
    [Crossref] [PubMed]
  34. M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
    [Crossref] [PubMed]
  35. M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).
  36. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  37. D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
    [Crossref] [PubMed]
  38. A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
    [Crossref] [PubMed]
  39. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref] [PubMed]

2015 (5)

S. F. Lahiji, M. Dangol, and H. Jung, “A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery,” Sci. Rep. 5, 7914 (2015).
[Crossref] [PubMed]

I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Y.-J. Hong, S. Makita, S. Sugiyama, and Y. Yasuno, “Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction,” Biomed. Opt. Express 6(1), 225–243 (2015).
[Crossref] [PubMed]

B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G.-O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
[Crossref] [PubMed]

2014 (10)

P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
[PubMed]

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref] [PubMed]

W. J. Choi, Z. Zhi, and R. K. Wang, “In vivo OCT microangiography of rodent iris,” Opt. Lett. 39(8), 2455–2458 (2014).
[Crossref] [PubMed]

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

D. Nankivil, A. H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
[Crossref] [PubMed]

C. H. Yang, M. T. Tsai, S. C. Shen, C. Y. Ng, and S. M. Jung, “Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography,” Biomed. Opt. Express 5(11), 3949–3959 (2014).
[Crossref] [PubMed]

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

2013 (6)

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
[Crossref] [PubMed]

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (4)

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

2009 (1)

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

2004 (2)

M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Adv. Drug Deliv. Rev. 56(5), 581–587 (2004).
[Crossref] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

1999 (2)

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

1997 (1)

J. Yu and Y. W. Chien, “Pulmonary drug delivery: physiologic and mechanistic aspects,” Crit. Rev. Ther. Drug Carrier Syst. 14(4), 395–453 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aalders, M. C. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Ahn, G.-O.

An, L.

Berkowitz, R. B.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Bernstein, D. I.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Bijukumar, D.

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

Birchall, J.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Bouma, B. E.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Bouwstra, J.

K. van der Maaden, W. Jiskoot, and J. Bouwstra, “Microneedle technologies for (trans)dermal drug and vaccine delivery,” J. Control. Release 161(2), 645–655 (2012).
[Crossref] [PubMed]

Cable, A.

Cable, A. E.

Cadotte, A.

Cadotte, D. W.

Carey, J. B.

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

Chang, T. C.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, N.

P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
[PubMed]

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Chen, Z.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Chien, Y. W.

J. Yu and Y. W. Chien, “Pulmonary drug delivery: physiologic and mechanistic aspects,” Crit. Rev. Ther. Drug Carrier Syst. 14(4), 395–453 (1997).
[Crossref] [PubMed]

Chin, L.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Cho, W. K.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Choi, S. O.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Choi, W. J.

Choonara, B. F.

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

Choonara, Y. E.

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

Compans, R. W.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Damaraju, C. R.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Dangol, M.

S. F. Lahiji, M. Dangol, and H. Jung, “A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery,” Sci. Rep. 5, 7914 (2015).
[Crossref] [PubMed]

de Boer, J. F.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Del Pilar Martin, M.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Dhalla, A. H.

Dö Rschel, K.

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Donnelly, R. F.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Draper, S. J.

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

du Toit, L. C.

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Enfield, J.

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Farsiu, S.

Fehlings, M. G.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Fujimoto, J. G.

Gahm, N.

Garland, M. J.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

Gho, Y. S.

Ghosn, M. G.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007).
[Crossref] [PubMed]

Glasser, A.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grulkowski, I.

Hahn, A.

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

He, J. S.

I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hill, A. V.

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

Hong, Y.-J.

Hook, S.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, H. E.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Huber, R.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Indermun, S.

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

Ishii, M.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Izatt, J. A.

Jayaraman, V.

Jiang, J.

Jiskoot, W.

K. van der Maaden, W. Jiskoot, and J. Bouwstra, “Microneedle technologies for (trans)dermal drug and vaccine delivery,” J. Control. Release 161(2), 645–655 (2012).
[Crossref] [PubMed]

Jonathan, E.

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

Jung, H.

S. F. Lahiji, M. Dangol, and H. Jung, “A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery,” Sci. Rep. 5, 7914 (2015).
[Crossref] [PubMed]

Jung, S. M.

Jung, W. Q.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Karp, J. M.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Kästle, R.

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[Crossref] [PubMed]

Keikhanzadeh, K.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Kennedy, B. F.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Khurana, M.

Kiehl, T.-R.

Kim, B.

Kim, K. H.

Koutsonanos, D. G.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Kumar, P.

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

LaForce, C.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Lahiji, S. F.

S. F. Lahiji, M. Dangol, and H. Jung, “A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery,” Sci. Rep. 5, 7914 (2015).
[Crossref] [PubMed]

Larin, K. V.

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007).
[Crossref] [PubMed]

Larina, I. V.

Latham, B.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Lawlor, K.

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

Leahy, M.

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

Lee, C. K.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Lee, I. C.

I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
[Crossref]

Lee, J. D.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Lee, J. W.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Lee, K. K.

Lee, S. H.

Leung, M. K.

Li, J.

Li, P.

Li, X.

Liang, W.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, K. C.

I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
[Crossref]

Lin, K. M.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Lin, L. Y.

Lin, T. H.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Lin, Y. X.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Liu, H. L.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Liu, J. J.

Liu, Z.

Lopez, A. L.

Luttge, R.

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

Majithiya, R.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

Makita, S.

Mariampillai, A.

Martin, J. F.

McCarron, P. A.

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

McLaughlin, R. A.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Meglinski, I.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Mehta, K.

P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
[PubMed]

Mesarina-Wicki, B.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Migalska, K.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Modi, G.

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

Moore, A. C.

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

Morikawa, Y.

Moriyama, E. H.

Morrow, D. I.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Mü Ller, G.

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Munce, N. R.

Murthy, N.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Nankivil, D.

Nelson, J. S.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Ng, C. Y.

Nolop, K. B.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

O’Cearbhaill, E. D.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

O’Connell, M.-L.

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

O’Mahony, C.

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Park, H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Park, K. M.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Pedinoff, A. J.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Pillay, V.

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

Pomahac, B.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Potsaid, B.

Prausnitz, M. R.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Adv. Drug Deliv. Rev. 56(5), 581–587 (2004).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qin, J.

Rades, T.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Rattanapak, T.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Rehman, S.

P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
[PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Rooklin, A. R.

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Sampson, D. D.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Sattler, E.

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[Crossref] [PubMed]

Saunders, C. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shen, S. C.

Shen, T. T.

Shia, K.

Singh, T. R.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Sisk, G. C.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Skountzou, I.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Srinivas, S. M.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sudheendran, N.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

Sugiyama, S.

Sullivan, S. P.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tao, G.

Tsai, M. T.

I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
[Crossref]

C. H. Yang, M. T. Tsai, S. C. Shen, C. Y. Ng, and S. M. Jung, “Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography,” Biomed. Opt. Express 5(11), 3949–3959 (2014).
[Crossref] [PubMed]

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

Tuchin, V. V.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007).
[Crossref] [PubMed]

van der Maaden, K.

K. van der Maaden, W. Jiskoot, and J. Bouwstra, “Microneedle technologies for (trans)dermal drug and vaccine delivery,” J. Control. Release 161(2), 645–655 (2012).
[Crossref] [PubMed]

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Villiger, M.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Vitkin, I. A.

Vrdoljak, A.

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

Wang, R.

Wang, R. K.

Wang, S.

Welzel, J.

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[Crossref] [PubMed]

Wendt, M.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

Wilson, B. C.

Woolfson, A. D.

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Xi, J.

Yang, C. H.

Yang, S. Y.

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Yang, V. X.

Yasuno, Y.

Yoon, C. J.

Young, K.

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

Yousefi, S.

Yu, J.

J. Yu and Y. W. Chien, “Pulmonary drug delivery: physiologic and mechanistic aspects,” Crit. Rev. Ther. Drug Carrier Syst. 14(4), 395–453 (1997).
[Crossref] [PubMed]

Yu, S.

Zarnitsyn, V.

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Zhang, A.

Zhang, J.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
[PubMed]

Zhi, Z.

Adv. Drug Deliv. Rev. (1)

M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Adv. Drug Deliv. Rev. 56(5), 581–587 (2004).
[Crossref] [PubMed]

Allergy (1)

R. B. Berkowitz, D. I. Bernstein, C. LaForce, A. J. Pedinoff, A. R. Rooklin, C. R. Damaraju, B. Mesarina-Wicki, and K. B. Nolop, “Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis,” Allergy 54(1), 64–69 (1999).
[Crossref] [PubMed]

Biomed. Opt. Express (7)

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref] [PubMed]

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
[Crossref] [PubMed]

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

C. H. Yang, M. T. Tsai, S. C. Shen, C. Y. Ng, and S. M. Jung, “Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography,” Biomed. Opt. Express 5(11), 3949–3959 (2014).
[Crossref] [PubMed]

Y.-J. Hong, S. Makita, S. Sugiyama, and Y. Yasuno, “Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction,” Biomed. Opt. Express 6(1), 225–243 (2015).
[Crossref] [PubMed]

B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G.-O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
[Crossref] [PubMed]

Biotechnol. Adv. (1)

B. F. Choonara, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. du Toit, and V. Pillay, “A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules,” Biotechnol. Adv. 32(7), 1269–1282 (2014).
[Crossref] [PubMed]

Crit. Rev. Ther. Drug Carrier Syst. (1)

J. Yu and Y. W. Chien, “Pulmonary drug delivery: physiologic and mechanistic aspects,” Crit. Rev. Ther. Drug Carrier Syst. 14(4), 395–453 (1997).
[Crossref] [PubMed]

Drug Dev. Ind. Pharm. (1)

R. F. Donnelly, D. I. Morrow, T. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, and A. D. Woolfson, “Processing difficulties and instability of carbohydrate microneedle arrays,” Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[Crossref] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18, 101307 (2013).

A. Roggan, M. Friebel, K. Dö Rschel, A. Hahn, and G. Mü Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography,” J. Biomed. Opt. 15(4), 046001 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3(1-2), 25–33 (2010).
[Crossref] [PubMed]

J. Control. Release (4)

K. van der Maaden, W. Jiskoot, and J. Bouwstra, “Microneedle technologies for (trans)dermal drug and vaccine delivery,” J. Control. Release 161(2), 645–655 (2012).
[Crossref] [PubMed]

S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi, and V. Pillay, “Current advances in the fabrication of microneedles for transdermal delivery,” J. Control. Release 185, 130–138 (2014).
[Crossref] [PubMed]

T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, and S. Hook, “Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy,” J. Control. Release 172(3), 894–903 (2013).
[Crossref] [PubMed]

R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, and A. D. Woolfson, “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” J. Control. Release 147(3), 333–341 (2010).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

I. C. Lee, J. S. He, M. T. Tsai, and K. C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 3(2), 276–285 (2015).
[Crossref]

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Y. Yang, E. D. O’Cearbhaill, G. C. Sisk, K. M. Park, W. K. Cho, M. Villiger, B. E. Bouma, B. Pomahac, and J. M. Karp, “A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue,” Nat. Commun. 4, 1702 (2013).
[Crossref] [PubMed]

Nat. Med. (1)

S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med. 16(8), 915–920 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Opt. Lett. (5)

Sci. Rep. (4)

P. Zhang, K. Mehta, S. Rehman, and N. Chen, “Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy,” Sci. Rep. 4, 4979 (2014).
[PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

J. B. Carey, A. Vrdoljak, C. O’Mahony, A. V. Hill, S. J. Draper, and A. C. Moore, “Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route,” Sci. Rep. 4, 6154 (2014).
[Crossref] [PubMed]

S. F. Lahiji, M. Dangol, and H. Jung, “A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery,” Sci. Rep. 5, 7914 (2015).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

L. L. Brunton, B. Chabner, and B. Knollman, Goodman & Gilman’s the Pharmacological Basis of Therapeutics (McGraw-Hill Medical New York, 2011) vol. 12, pp. 17–41.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the 1060-nm SS-OCT system. PC: polarization controller; FC: fiber coupler; DC: dispersion compensation; M: mirror; SL: scanning lens.

Fig. 2
Fig. 2

2D OCT images of the same skin location on the mouse ear obtained (a) before inserting the microneedle patch on the skin and (b) 0 min, (c) 10 mins, (d) 20 mins, (e) 30 mins, (f) 40 mins, (g) 50 mins, (h) 60 mins, (i) 70 mins, (j) 80 mins, (k) 90 mins, (l) 100 mins, (m) 110 mins, (n) 120 mins, (o) 130 mins, (p) 140 mins, (q) 150 mins, (r) 160 mins, (s) 170 mins, and (t) after removing the MN patch. The scale bar in (a) represents 1 mm in length.

Fig. 3
Fig. 3

Time-series en-face images at three different depths in the mouse ear skin obtained after the insertion of MN patch for (a), (f), (k) 20 mins; (b), (g), (l) 60 mins; (c), (h), (m) 100 mins; (d), (i), (n) 140 mins; and (e), (j), (o) 180 mins

Fig. 4
Fig. 4

Estimated areas of MNs at three different depths of 100, 200, and 300 μm as a function of time.

Fig. 5
Fig. 5

Projection view of the skin surface obtained (a) before insertion of the MN patch and (b) 0 hr, (c) 12 hrs, (d) 24 hrs, (e) 36 hrs, and (f) 48 hrs after removing the MN patch. (g)-(l): representative B-mode scans corresponding to the locations indicated by the red lines in (a)-(f), respectively.

Fig. 6
Fig. 6

(a)-(f) Full depth range projection view of OCT angiography obtained (a) before insertion of the MN patch and (b) 0 hr, (c) 12 hrs, (d) 24 hrs, (e) 36 hrs, and (f) 48 hrs after removing the MN patch. (g) A photo of a mouse ear before insertion of a MN patch, and (h) a photo of a mouse ear after removing the MN patch by using Evans blue as a contrast agent for identification of blood leakage. The scale bars in (d) represent 0.5 mm in length.

Fig. 7
Fig. 7

Summation of SV values of regions A, B, C, and D indicated by the grey squares in Fig. 6 as a function of time.

Fig. 8
Fig. 8

(a) In vivo OCT image after insertion of the MN patch. Time-variant cross-correlation mapping at the same skin location after applying the MN patch to the skin for (b) 0.5 s, (c) 1 s, (d) 1.5 s, (e) 2 s, (f) 2.5 s, (g) 3 s, (h) 3.5 s, (i)4 s, (j) 6 s, (k) 8 s, (l) 10 s, (m) 12 s, (n) 14 s, (o) 16 s, (p) 18 s, (q) 20 s, (r) 30 s, and (s) 40 s. (f) Fluorescent image after application of the MN patch for 50 s. The brown color in (b)-(s) represents the MN patch structure. The scale bars in (a) and (t) represent 1 mm in length.

Fig. 9
Fig. 9

Total areas of low correlation in regions A, B, and C indicated by the grey squares in Fig. 8 as a function of time.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S V ijk = 1 N k=1 N ( I ijk 1 N k=1 N I ijk ) 2
C(x,z)= i=1 n j=1 m [ I A (x+i,z+j) I A ¯ ][ I B (x+i,z+j) I B ¯ ] [ I A (x+i,z+j) I A ¯ ] 2 [ I B (x+i,z+j) I B ¯ ] 2

Metrics