Abstract

Optimizing contrast enhancement is essential for producing specific signals in biomedical imaging and therapy. The potential of using Aucore-Agshell nanorods (Au@Ag NRs) as a dual-functional theranostic contrast agent is demonstrated for effective cancer imaging and treatments. Due to its strong NIR absorption and high efficiency of photothermal conversion, effects of both photoacoustic tomography (PAT) and photothermal therapy (PTT) are enhanced significantly. The PAT signal grows by 45.3% and 82% in the phantom and in vivo experiments, respectively, when compared to those using Au NRs. In PTT, The maximum increase of tissue temperature treated with Au@Ag NRs is 22.8 °C, twice that with Au NRs. Results of the current study show the feasibility of using Au@Ag NRs for synergetic PAT with PTT. And it will enhance the potential application on real-time PAT guided PTT, which will greatly benefit the customized PTT treatment of cancer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells

Taeseok Daniel Yang, Wonshik Choi, Tai Hyun Yoon, Kyoung Jin Lee, Jae-Seung Lee, Jang Ho Joo, Min-Goo Lee, Hong Soon Yim, Kyung Min Choi, Byoungjae Kim, Jung Joo Lee, Heejin Kim, Doh Young Lee, Kwang-Yoon Jung, and Seung-Kuk Baek
Biomed. Opt. Express 7(1) 185-193 (2016)

Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells

Jaesook Park, Arnold Estrada, Kelly Sharp, Krystina Sang, Jon A. Schwartz, Danielle K. Smith, Chris Coleman, J. Donald Payne, Brian A. Korgel, Andrew K. Dunn, and James W. Tunnell
Opt. Express 16(3) 1590-1599 (2008)

In vivo photothermal treatment with real-time monitoring by optical fiber-needle array

Taeseok Daniel Yang, Kwanjun Park, Hyung-Jin Kim, Nu-Ri Im, Byoungjae Kim, TaeHoon Kim, Sohyun Seo, Jae-Seung Lee, Beop-Min Kim, Youngwoon Choi, and Seung-Kuk Baek
Biomed. Opt. Express 8(7) 3482-3492 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
    [Crossref] [PubMed]
  2. K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
    [Crossref] [PubMed]
  3. C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, “Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods,” Biomed. Opt. Express 2(7), 1828–1835 (2011).
    [Crossref] [PubMed]
  4. M. Heijblom, D. Piras, W. Xia, J. C. van Hespen, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
    [Crossref] [PubMed]
  5. C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
    [Crossref] [PubMed]
  6. Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
    [Crossref] [PubMed]
  7. Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
    [Crossref] [PubMed]
  8. W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
    [Crossref] [PubMed]
  9. P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
    [Crossref] [PubMed]
  10. S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
    [Crossref] [PubMed]
  11. Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
    [Crossref] [PubMed]
  12. C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
    [Crossref] [PubMed]
  13. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
    [Crossref] [PubMed]
  14. D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
    [Crossref] [PubMed]
  15. A. A. Oraevsky, “Gold and silver nanoparticles as contrast agents for optoacoustic tomography,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, eds. (CRC Press: Florida, 2009) pp 373–386.
  16. S. Yang, F. Ye, and D. Xing, “Intracellular label-free gold nanorods imaging with photoacoustic microscopy,” Opt. Express 20(9), 10370–10375 (2012).
    [Crossref] [PubMed]
  17. K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
    [Crossref] [PubMed]
  18. M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
    [Crossref] [PubMed]
  19. K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
    [Crossref] [PubMed]
  20. S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
    [Crossref] [PubMed]
  21. Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
    [Crossref]
  22. C. Caro, P. M. Castillo, R. Killpstein, D. Pozo, and A. P. Zaderenko, “Silver nanoparticles: sensing and imaging application,” In Silver Nanoparticles; David P. P. Eds; InTech: Croatia; pp 201–224 (2010)
  23. C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Aucore-Agshell nanorods and characterization of their surface plasmon resonances,” J. Phys. Chem. B 105(33), 7871–7873 (2001).
    [Crossref]
  24. Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
    [Crossref]
  25. T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
    [Crossref] [PubMed]
  26. I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
    [Crossref] [PubMed]
  27. A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
    [Crossref] [PubMed]
  28. H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
    [Crossref]
  29. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
    [Crossref] [PubMed]
  30. D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
    [Crossref] [PubMed]
  31. B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
    [Crossref]
  32. C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
    [Crossref]
  33. S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
    [Crossref] [PubMed]
  34. M. Z. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
    [Crossref]
  35. B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
    [Crossref] [PubMed]
  36. J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
    [Crossref] [PubMed]
  37. C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
    [Crossref] [PubMed]
  38. A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
    [Crossref] [PubMed]
  39. X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
    [Crossref] [PubMed]
  40. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
    [Crossref] [PubMed]
  41. J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
    [Crossref] [PubMed]
  42. J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
    [Crossref] [PubMed]
  43. S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
    [Crossref]
  44. A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
    [Crossref] [PubMed]
  45. E. Koivunen, B. Wang, and E. Ruoslahti, “Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins,” Biotechnology (N. Y.) 13(3), 265–270 (1995).
    [Crossref] [PubMed]
  46. Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
    [Crossref] [PubMed]
  47. M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
    [Crossref] [PubMed]
  48. J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
    [Crossref] [PubMed]

2015 (1)

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

2014 (9)

T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
[Crossref] [PubMed]

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
[Crossref] [PubMed]

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
[Crossref] [PubMed]

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

2013 (5)

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
[Crossref] [PubMed]

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

2012 (8)

S. Yang, F. Ye, and D. Xing, “Intracellular label-free gold nanorods imaging with photoacoustic microscopy,” Opt. Express 20(9), 10370–10375 (2012).
[Crossref] [PubMed]

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

M. Heijblom, D. Piras, W. Xia, J. C. van Hespen, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref] [PubMed]

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

2011 (5)

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, “Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods,” Biomed. Opt. Express 2(7), 1828–1835 (2011).
[Crossref] [PubMed]

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

2010 (7)

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
[Crossref] [PubMed]

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

2009 (1)

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

2008 (1)

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

2007 (2)

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
[Crossref] [PubMed]

2005 (2)

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

2004 (1)

M. Z. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

2002 (1)

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

2001 (1)

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Aucore-Agshell nanorods and characterization of their surface plasmon resonances,” J. Phys. Chem. B 105(33), 7871–7873 (2001).
[Crossref]

1995 (1)

E. Koivunen, B. Wang, and E. Ruoslahti, “Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins,” Biotechnology (N. Y.) 13(3), 265–270 (1995).
[Crossref] [PubMed]

1991 (1)

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Ah, C. S.

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Aucore-Agshell nanorods and characterization of their surface plasmon resonances,” J. Phys. Chem. B 105(33), 7871–7873 (2001).
[Crossref]

Ahn, C. H.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Alexandridis, P.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Alvarez, P. J. J.

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

Ao, L.

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Aronova, M.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Astilean, S.

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Attia, A. B. E.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Au, L.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Balasundaram, G.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Baldeck, P. L.

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Bamrungsap, S.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Banerjee, P.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Bang, D.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Barnhart, T. E.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Bauer, A. Q.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Bayer, C. L.

Boca, S. C.

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Brannon-Peppas, L.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Buchanan, C. F.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Buehler, A.

X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
[Crossref] [PubMed]

Cai, W.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Chai, X. Y.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Chang, H. T.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Chen, J.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Chen, S.

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

Chen, X.

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Chen, Y. K.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Chen, Y. S.

S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, “Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods,” Biomed. Opt. Express 2(7), 1828–1835 (2011).
[Crossref] [PubMed]

Cheng, J. X.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Cheng, K.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Cheng, Z.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Cho, E. C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Choi, J.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Choi, K.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Cobley, C. M.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Colvin, V. L.

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

Cormode, D. P.

A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
[Crossref] [PubMed]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
[Crossref] [PubMed]

Cui, D.

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Cui, D. X.

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Culver, J. P.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Curry, T.

T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
[Crossref] [PubMed]

Deán-Ben, X. L.

X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
[Crossref] [PubMed]

Debata, P. R.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Diendorf, J.

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Dinish, U. S.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Driessen, W.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Elliott, A.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

El-Sayed, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

Emelianov, S.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, “Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods,” Biomed. Opt. Express 2(7), 1828–1835 (2011).
[Crossref] [PubMed]

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Emelianov, S. Y.

S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
[Crossref] [PubMed]

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Epple, M.

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Erpelding, T. N.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Fan, S. H.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Favazza, C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Fayad, Z. A.

A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
[Crossref] [PubMed]

Fisher, J. W.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Flores, L. G.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Frey, W.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Fu, Q.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Gabudean, A.-M.

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Gai, Z.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Gambhir, S. S.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Gao, F.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Gao, G. X.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Gelovani, J. G.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Geng, J.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Gensler, H.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Ghandehari, H.

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

Ghosh, S.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Gill-Sharp, K. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Gomez, S.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Green, C.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Greulich, C.

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Guyot-Sionnest, P.

M. Z. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

Haam, S.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Hansen, M. N.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Hatcher, H. C.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

He, H.

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Heijblom, M.

Ho, C. J. H.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Homan, K.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Homan, K. A.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Hong, H.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Hong, K.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Hong, S. D.

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Aucore-Agshell nanorods and characterization of their surface plasmon resonances,” J. Phys. Chem. B 105(33), 7871–7873 (2001).
[Crossref]

Huang, P.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Huang, Q.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Huang, Y. F.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Huff, T. B.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Huh, Y. M.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Huizinga, J. D.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Hurt, R. H.

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
[Crossref] [PubMed]

Jana, N. R.

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

Jang, D.-J.

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Aucore-Agshell nanorods and characterization of their surface plasmon resonances,” J. Phys. Chem. B 105(33), 7871–7873 (2001).
[Crossref]

Jeon, M.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Jeong, S. Y.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Jiang, H.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Johnsson, B.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Jokerst, J. V.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Juhem, A.

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Kane, A. B.

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

Karpiouk, A.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Kim, C.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Kim, D. E.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Kim, K.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Kim, S.

S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, “Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods,” Biomed. Opt. Express 2(7), 1828–1835 (2011).
[Crossref] [PubMed]

Kittler, S.

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Klaase, J. M.

Koh, A. L.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Koivunen, E.

E. Koivunen, B. Wang, and E. Ruoslahti, “Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins,” Biotechnology (N. Y.) 13(3), 265–270 (1995).
[Crossref] [PubMed]

Koller, M.

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Kopelman, R.

T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
[Crossref] [PubMed]

Kothapalli, S. R.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Kruizinga, P.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Ku, G.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Kwon, I. C.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Lanza, G. M.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Leapman, R. D.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Levi, J.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Li, C.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Li, J.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Li, L.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Li, M. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Li, Q.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Li, W.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Li, Z.

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Liao, L. D.

Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
[Crossref] [PubMed]

Lin, J.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Lindquist, G.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Line, B. R.

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

Liu, B.

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Liu, D.

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

Liu, F. D.

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

Liu, H.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Liu, J.

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
[Crossref] [PubMed]

Liu, M. Z.

M. Z. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

Löfås, S.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Lovell, J. F.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Lu, W.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Luke, G. P.

S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
[Crossref] [PubMed]

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Mahmoud, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

Mallidi, S.

Manohar, S.

McLaren, R.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

McNeill, E.

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

Melancon, M. P.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Mieszawska, A. J.

A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
[Crossref] [PubMed]

Miller, C. M.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
[Crossref] [PubMed]

Ming, H.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Mitra, A.

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

Mulder, W. J. M.

A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
[Crossref] [PubMed]

Mulholland, J.

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

Murphy, C. J.

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

Na, J. H.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Nan, A.

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

Nie, Z.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Niu, G.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Nothdurft, R. E.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Ntziachristos, V.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Olivo, M.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Pan, B.

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Pan, D.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Park, J.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Piras, D.

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
[Crossref] [PubMed]

Popovtzer, R.

T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
[Crossref] [PubMed]

Potara, M.

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Pramanik, M.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Puppala, H. L.

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

Razansky, D.

X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
[Crossref] [PubMed]

Ren, Q.

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Rich, L. J.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Rong, P.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Ruoslahti, E.

E. Koivunen, B. Wang, and E. Ruoslahti, “Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins,” Biotechnology (N. Y.) 13(3), 265–270 (1995).
[Crossref] [PubMed]

Rylander, C. G.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Rylander, M. N.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Sarkar, S.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Schwartz, J. A.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Sefah, K.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Senpan, A.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Seshadri, M.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Shah, J.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

Shen, J.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Sheng, Y.

Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
[Crossref] [PubMed]

Shervani, S.

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
[Crossref] [PubMed]

Shi, R. Q.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Shi, S.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Shi, Y. W.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Shilo, M.

T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
[Crossref] [PubMed]

Sokolov, K.

Song, K. H.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Song, S.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Sonshine, D. A.

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
[Crossref] [PubMed]

Souza, M.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Stafford, R. J.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Steenbergen, W.

Stoica, G.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Suh, J. S.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Sun, I. C.

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Sun, X.

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Szot, C. S.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Tan, M. C.

Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
[Crossref] [PubMed]

Tan, W.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Thakor, N.

Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
[Crossref] [PubMed]

Tian, H.

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Tong, L.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Torti, S. V.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Truby, R.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
[Crossref] [PubMed]

van den Engh, F. M.

van Hespen, J. C.

van Leeuwen, T. G.

Vreeland, E.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

Wang, B.

E. Koivunen, B. Wang, and E. Ruoslahti, “Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins,” Biotechnology (N. Y.) 13(3), 265–270 (1995).
[Crossref] [PubMed]

Wang, H.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

Wang, J. C.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Wang, L. V.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Wang, P.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Wang, S.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Wang, X.

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Wang, X. X.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Wang, Z.

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

Wei, A.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Whitney, J.

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

Wickline, S. A.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Wong, C. L.

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Wu, J. C.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Xi, P.

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Xia, W.

Xia, Y.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Xing, D.

Xiong, C.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Xiu, Z. M.

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

Yang, J.

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Yang, M.

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

Yang, S.

S. Yang, F. Ye, and D. Xing, “Intracellular label-free gold nanorods imaging with photoacoustic microscopy,” Opt. Express 20(9), 10370–10375 (2012).
[Crossref] [PubMed]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Ye, F.

Yeager, D.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Yi, M. F.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Zhang, D. G.

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

Zhang, Q.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Zhang, Q. B.

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

Zhang, R.

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Zhang, X.

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Zhao, Y.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Zhou, C. Q.

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Zhou, S.

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

ACS Nano (4)

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green, E. Vreeland, and S. Emelianov, “Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging,” ACS Nano 6(1), 641–650 (2012).
[Crossref] [PubMed]

J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6(11), 9887–9899 (2012).
[Crossref] [PubMed]

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled release of biologically active silver from nanosilver surfaces,” ACS Nano 4(11), 6903–6913 (2010).
[Crossref] [PubMed]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

Anal. Biochem. (1)

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, and X. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 52(52), 13958–13964 (2013).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Biomaterials (1)

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31(14), 4088–4093 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biotechnology (N. Y.) (1)

E. Koivunen, B. Wang, and E. Ruoslahti, “Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins,” Biotechnology (N. Y.) 13(3), 265–270 (1995).
[Crossref] [PubMed]

Cancer Lett. (1)

S. C. Boca, M. Potara, A.-M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy,” Cancer Lett. 311(2), 131–140 (2011).
[Crossref] [PubMed]

Cancer Res. (2)

J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation,” Cancer Res. 70(23), 9855–9864 (2010).
[Crossref] [PubMed]

W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, and C. Li, “Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma,” Cancer Res. 71(19), 6116–6121 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater. 22(16), 4548–4554 (2010).
[Crossref]

Contrast Media Mol. Imaging (1)

T. Curry, R. Kopelman, M. Shilo, and R. Popovtzer, “Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy,” Contrast Media Mol. Imaging 9(1), 53–61 (2014).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

S. Kim, Y. S. Chen, G. P. Luke, and S. Y. Emelianov, “In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 891–897 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

K. Cheng, S. R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, and Z. Cheng, “Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects,” J. Am. Chem. Soc. 136(9), 3560–3571 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15(2), 021316 (2010).
[Crossref] [PubMed]

J. Control. Release (1)

A. Mitra, J. Mulholland, A. Nan, E. McNeill, H. Ghandehari, and B. R. Line, “Targeting tumor angiogenic vasculature using polymer-RGD conjugates,” J. Control. Release 102(1), 191–201 (2005).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

H. Wang, J. Shen, G. X. Gao, Z. Gai, K. Hong, P. R. Debata, P. Banerjee, and S. Zhou, “Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy,” J. Mater. Chem. B Mater. Biol. Med. 1(45), 6225–6234 (2013).
[Crossref]

J. Opt. (1)

Q. Fu, D. G. Zhang, M. F. Yi, X. X. Wang, Y. K. Chen, P. Wang, and H. Ming, “Effect of shell thickness on a Au-Ag core-shell nanorods-based plasmonic nano-sensor,” J. Opt. 14(8), 085001 (2012).
[Crossref]

J. Phys. Chem. B (2)

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Aucore-Agshell nanorods and characterization of their surface plasmon resonances,” J. Phys. Chem. B 105(33), 7871–7873 (2001).
[Crossref]

M. Z. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

J. Phys. Chem. Lett. (1)

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

Langmuir (1)

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Mol. Pharm. (2)

A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Mol. Pharm. 10(3), 831–847 (2013).
[Crossref] [PubMed]

Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[Crossref] [PubMed]

Nano Lett. (3)

Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12(8), 4271–4275 (2012).
[Crossref] [PubMed]

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,” Nano Lett. 7(12), 3808–3812 (2007).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond.) 2(1), 125–132 (2007).
[Crossref] [PubMed]

Nanoscale (1)

S. Chen, D. Liu, Z. Wang, X. Sun, D. Cui, and X. Chen, “Picomolar detection of mercuric ions by means of gold-silver core-shell nanorods,” Nanoscale 5(15), 6731–6735 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

B. Pan, L. Ao, F. Gao, H. Tian, H. He, and D. X. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[Crossref]

Nat. Nanotechnol. (1)

Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, “Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines,” Nat. Nanotechnol. 9(8), 631–638 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Pharm. Res. (1)

I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, and K. Kim, “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharm. Res. 31(6), 1418–1425 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing,” Phys. Med. Biol. 59(17), 4785–4797 (2014).
[Crossref] [PubMed]

Plasmonics (1)

Y. W. Shi, S. H. Fan, L. Li, Q. Li, X. Y. Chai, R. Q. Shi, and C. Q. Zhou, “PEGylated Aucore-Agshell nanorods as optical coherence tomography signal nanoamplifiers,” Plasmonics 10(6), 1381–1389 (2015).
[Crossref]

Sci. Rep. (3)

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

C. J. H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C. L. Wong, U. S. Dinish, A. B. E. Attia, V. Ntziachristos, and M. Olivo, “Multifunctional photosensitizer-based contrast agents for photoacoustic imaging,” Sci. Rep. 4, 5342 (2014).
[Crossref] [PubMed]

Y. Sheng, L. D. Liao, N. Thakor, and M. C. Tan, “Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging,” Sci. Rep. 4, 6562 (2014).
[Crossref] [PubMed]

Small (1)

J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, and S. Haam, “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8(5), 746–753 (2012).
[Crossref] [PubMed]

Other (2)

C. Caro, P. M. Castillo, R. Killpstein, D. Pozo, and A. P. Zaderenko, “Silver nanoparticles: sensing and imaging application,” In Silver Nanoparticles; David P. P. Eds; InTech: Croatia; pp 201–224 (2010)

A. A. Oraevsky, “Gold and silver nanoparticles as contrast agents for optoacoustic tomography,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, eds. (CRC Press: Florida, 2009) pp 373–386.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) TEM images of Au NRs dispersed in PBS. Scale bar: 50 nm. b) TEM images of Au@Ag NRs dispersed in PBS. The Ag shell was about 1.2 nm. Scale bar: 20 nm. c) TEM images of Au@Ag NRs dispersed in PBS. The Ag shell was about 2.3 nm. Scale bar: 10 nm. d) TEM images of Au@Ag NRs dispersed in PBS. The Ag shell was about 3.2 nm. Scale bar: 10 nm. e) Elementary mapping images of Au@Ag NRs / 3.2 nm. The red curve represented the elementary of gold, while the cyanic curve represented the elementary of silver. The two peaks (white arrows) of the cyanic curve occured at the two sides of the peak of the red curve, indicating that silver was around gold. The dashed line indicated the center of the peak. Scale bar: 3 µm. f) Measured UV-VIS absorbance spectra of different Au@Ag NRs and Au NRs, showing peak extinction at 736 nm, 770 nm, 847 nm and 770 nm, respectively.
Fig. 2
Fig. 2 In vitro PAT images of the phantom injected with different contrast agents (b-e). a) Phantom schematic. b) PAT images of Au NRs. c) PAT images of Au@Ag NRs / 1.2 nm. d) PAT images of Au@Ag NRs / 2.3 nm. e) PAT images of Au@Ag NRs / 3.2 nm. f) Red circles indicated the region of interests. Figure 2(f) is the enlarged picture of Fig. 2(d), showing the sites selected for analyzing the PAT signal intensity. g) Average PAT signal intensity of different contrast agents with the same concentration. The error bars on the bar graphs are standard deviation.
Fig. 3
Fig. 3 In vivo PAT images of tumor tissue (white dashed circle) injected with different contrast agents (a-d). a) PAT images of tumor site before and 7 h after injection of Au NRs. b) PAT images of tumor site before and 1 h after injection of Au@Ag NRs / 1.2 nm. c) PA images of tumor site before and 1 h after injection of Au@Ag NRs / 2.3 nm. d) PAT images of tumor site before and 1 h after injection of Au@Ag NRs / 3.2 nm. e) Average PAT signals of different contrast agents as a function of time. f) Average PAT signal intensity in Fig. 3(a)-3(d) at the tumor site. The error bars on the bar graphs are standard deviation.
Fig. 4
Fig. 4 In vivo thermal images of tumor-bearing mice exposed to an 808 nm laser for 8 min after received different treatments (a-c). a) Thermal images of tumor-bearing mice treated with laser alone. b) Thermal images of tumor-bearing mice treated with Au NRs. c) Thermal images of tumor-bearing mice treated with Au@Ag NRs. d) Temperature changes of the tumor site after received different treatments.
Fig. 5
Fig. 5 In vivo fluorescent images of tumor-bearing mice before and after received PTT. Fluorescent images of tumor-bearing mice injected with Au@Ag NRs a) before laser irradiation. b) 1 day after laser irradiation. c) 4 days after laser irradiation. d) 7 days after laser irradiation. Fluorescent images of tumor-bearing mice injected with Au NRs e) before laser irradiation. f) 1 day after laser irradiation. g) 4 days after laser irradiation. h) 7 days after laser irradiation.

Metrics