Abstract

Current-generation software for rendering volumetric OCT data sets based on ray casting results in volume visualizations with indistinct tissue features and sub-optimal depth perception. Recent developments in hand-held and microscope-integrated intrasurgical OCT designed for real-time volumetric imaging motivate development of rendering algorithms which are both visually appealing and fast enough to support real time rendering, potentially from multiple viewpoints for stereoscopic visualization. We report on an enhanced, real time, integrated volumetric rendering pipeline which incorporates high performance volumetric median and Gaussian filtering, boundary and feature enhancement, depth encoding, and lighting into a ray casting volume rendering model. We demonstrate this improved model implemented on graphics processing unit (GPU) hardware for real-time volumetric rendering of OCT data during tissue phantom and live human surgical imaging. We show that this rendering produces enhanced 3D visualizations of pathology and intraoperative maneuvers compared to standard ray casting.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

Liangbo Shen, Oscar Carrasco-Zevallos, Brenton Keller, Christian Viehland, Gar Waterman, Paul S. Hahn, Anthony N. Kuo, Cynthia A. Toth, and Joseph A. Izatt
Biomed. Opt. Express 7(5) 1711-1726 (2016)

Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality

Mark Draelos, Brenton Keller, Christian Viehland, Oscar M. Carrasco-Zevallos, Anthony Kuo, and Joseph Izatt
Biomed. Opt. Express 9(6) 2825-2843 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
    [Crossref] [PubMed]
  2. L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
    [PubMed]
  3. G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
    [Crossref] [PubMed]
  4. E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, “Combining optical coherence tomography (OCT) with an operating microscope,” in Advances in Medical Engineering (Springer, 2007), pp. 343–348.
  5. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
    [Crossref] [PubMed]
  6. S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
    [Crossref] [PubMed]
  7. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
    [Crossref] [PubMed]
  8. P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
    [Crossref] [PubMed]
  9. P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
    [Crossref] [PubMed]
  10. P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
    [Crossref] [PubMed]
  11. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
    [Crossref] [PubMed]
  12. P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
    [Crossref] [PubMed]
  13. Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
    [Crossref] [PubMed]
  14. J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
    [Crossref] [PubMed]
  15. J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).
    [Crossref] [PubMed]
  16. J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
    [Crossref] [PubMed]
  17. J. Migacz, O. Carrasco-Zevallos, P. Hahn, A. Kuo, C. Toth, and J. A. Izatt, “Intraoperative retinal optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications (2015), pp. 1771–1796.
  18. P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
    [PubMed]
  19. D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina (Philadelphia, Pa.) (2015).
  20. L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
    [Crossref]
  21. L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
    [Crossref] [PubMed]
  22. S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).
    [Crossref] [PubMed]
  23. S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).
  24. O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).
  25. C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).
  26. N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
    [Crossref] [PubMed]
  27. C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).
  28. O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).
  29. O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”
  30. O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).
  31. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  32. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [Crossref] [PubMed]
  33. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3(10), 2647–2657 (2012).
    [Crossref] [PubMed]
  34. L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
    [PubMed]
  35. J. K. Udupa, H.-M. Hung, and K.-S. Chuang, “Surface and volume rendering in three-dimensional imaging: A comparison,” J. Digit. Imaging 4(3), 159–168 (1991).
    [Crossref] [PubMed]
  36. J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).
  37. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
    [Crossref] [PubMed]
  38. M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
    [Crossref] [PubMed]
  39. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
    [Crossref] [PubMed]
  40. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  41. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
    [Crossref] [PubMed]
  42. M. Levoy, “Display of surfaces from volume data,” IEEE Trans. Computer Graphics and Applications 8(3), 29–37 (1988).
    [Crossref]
  43. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
    [Crossref] [PubMed]
  44. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
    [Crossref] [PubMed]
  45. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” in Biomedical Optics (BiOS)2008, (International Society for Optics and Photonics, 2008), 68440C–68440C–68448.
  46. A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” in SPIE BiOS: Biomedical Optics, (International Society for Optics and Photonics, 2009), 716312–716312–716312.
  47. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  48. C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
    [Crossref] [PubMed]
  49. P. Rheingans and D. Ebert, “Volume illustration: Nonphotorealistic rendering of volume models,” IEEE Trans. Visualization and Computer Graphics 7(3), 253–264 (2001).
    [Crossref]
  50. T. R. Nelson and T. T. Elvins, “Visualization of 3D ultrasound data,” IEEE Trans. Computer Graphics and Applications 13(6), 50–57 (1993).
    [Crossref]
  51. T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
    [Crossref] [PubMed]
  52. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
    [Crossref]
  53. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
    [Crossref] [PubMed]
  54. G. Perrot, S. Domas, and R. Couturier, “Fine-tuned High-speed Implementation of a GPU-based Median Filter,” J. Signal Process. Syst. Signal Image Video Technol. 75(3), 185–190 (2014).
    [Crossref]
  55. NVIDIA, “CUDA Programming Guide 7.5,” (2015).
  56. L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).
  57. S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

2016 (2)

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

2015 (10)

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

2014 (7)

G. Perrot, S. Domas, and R. Couturier, “Fine-tuned High-speed Implementation of a GPU-based Median Filter,” J. Signal Process. Syst. Signal Image Video Technol. 75(3), 185–190 (2014).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

2013 (5)

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref] [PubMed]

2012 (2)

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3(10), 2647–2657 (2012).
[Crossref] [PubMed]

2011 (5)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

2010 (5)

2009 (3)

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
[Crossref] [PubMed]

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

2008 (1)

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

2005 (2)

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

2001 (1)

P. Rheingans and D. Ebert, “Volume illustration: Nonphotorealistic rendering of volume models,” IEEE Trans. Visualization and Computer Graphics 7(3), 253–264 (2001).
[Crossref]

1998 (1)

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

1993 (1)

T. R. Nelson and T. T. Elvins, “Visualization of 3D ultrasound data,” IEEE Trans. Computer Graphics and Applications 13(6), 50–57 (1993).
[Crossref]

1991 (1)

J. K. Udupa, H.-M. Hung, and K.-S. Chuang, “Surface and volume rendering in three-dimensional imaging: A comparison,” J. Digit. Imaging 4(3), 159–168 (1991).
[Crossref] [PubMed]

1988 (1)

M. Levoy, “Display of surfaces from volume data,” IEEE Trans. Computer Graphics and Applications 8(3), 29–37 (1988).
[Crossref]

1975 (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[Crossref]

Abràmoff, M. D.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Adler, D. C.

Bachmann, B.

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Biedermann, B. R.

Binder, S.

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Birngruber, R.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Bizheva, K.

Carrasco-Zevallos, O.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

Carrasco-Zevallos, O. M.

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Chen, X.

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Chiu, S. J.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Chuang, K.-S.

J. K. Udupa, H.-M. Hung, and K.-S. Chuang, “Surface and volume rendering in three-dimensional imaging: A comparison,” J. Digit. Imaging 4(3), 159–168 (1991).
[Crossref] [PubMed]

Chukwurah, C.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

Clausi, D. A.

Couturier, R.

G. Perrot, S. Domas, and R. Couturier, “Fine-tuned High-speed Implementation of a GPU-based Median Filter,” J. Signal Process. Syst. Signal Image Video Technol. 75(3), 185–190 (2014).
[Crossref]

Cunefare, D.

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

Cursiefen, C.

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Dandridge, A.

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Day, S.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Dayani, P. N.

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

DeSouza, P.

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

DeSouza, P. J.

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

Dietlein, T.

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

Domas, S.

G. Perrot, S. Domas, and R. Couturier, “Fine-tuned High-speed Implementation of a GPU-based Median Filter,” J. Signal Process. Syst. Signal Image Video Technol. 75(3), 185–190 (2014).
[Crossref]

Draxinger, W.

Ebert, D.

P. Rheingans and D. Ebert, “Volume illustration: Nonphotorealistic rendering of volume models,” IEEE Trans. Visualization and Computer Graphics 7(3), 253–264 (2001).
[Crossref]

Ehlers, J. P.

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

Eigenwillig, C. M.

Elvins, T. T.

T. R. Nelson and T. T. Elvins, “Visualization of 3D ultrasound data,” IEEE Trans. Computer Graphics and Applications 13(6), 50–57 (1993).
[Crossref]

Falkner-Radler, C.

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Falkner-Radler, C. I.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Farsiu, S.

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Feiler, D.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Fekrat, S.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Garvin, M. K.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Geerling, G.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Gehlsen, U.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Glittenberg, C.

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Haas, P.

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Hagen, S.

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Hahn, P.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

Hauger, C.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Heindl, L. M.

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Hillmann, D.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

Hoerauf, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Hos, D.

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

Huber, R.

Hung, H.-M.

J. K. Udupa, H.-M. Hung, and K.-S. Chuang, “Surface and volume rendering in three-dimensional imaging: A comparison,” J. Digit. Imaging 4(3), 159–168 (1991).
[Crossref] [PubMed]

Hüttmann, G.

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

Ishikawa, H.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Izatt, J.

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Izatt, J. A.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

Jian, Y.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref] [PubMed]

Kaiser, P. K.

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Kang, J. U.

Kardon, R.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Karpf, S.

Keller, B.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Klein, T.

Koch, P.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

Krebs, I.

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Krug, M.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Kuo, A.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

Kuo, A. N.

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Lankenau, E.

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

Laqua, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

LaRocca, F.

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Le Blanc, C.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Lee, A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Lee, L. B.

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

Levoy, M.

M. Levoy, “Display of surfaces from volume data,” IEEE Trans. Computer Graphics and Applications 8(3), 29–37 (1988).
[Crossref]

Li, X. T.

Lin, P.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Lytvynchuk, L.

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

Maldonado, R.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

Maldonado, R. S.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Mangalesh, S.

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Martin, D. F.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Matz, H.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Migacz, J.

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Mishra, A.

Mruthyunjaya, P.

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Müller, M.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Nam, D. H.

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

Nankivil, D.

Nelson, T. R.

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

T. R. Nelson and T. T. Elvins, “Visualization of 3D ultrasound data,” IEEE Trans. Computer Graphics and Applications 13(6), 50–57 (1993).
[Crossref]

Nicholas, P.

Noonan, A. I.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

O’Connell, R.

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

O’Connell, R. V.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

O’Donnell, R.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Oelckers, S.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Pasricha, N. D.

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

Perrot, G.

G. Perrot, S. Domas, and R. Couturier, “Fine-tuned High-speed Implementation of a GPU-based Median Filter,” J. Signal Process. Syst. Signal Image Video Technol. 75(3), 185–190 (2014).
[Crossref]

Pfeiffer, T.

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[Crossref]

Postel, E. A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Pretorius, D. H.

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

Probst, J.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

Rheingans, P.

P. Rheingans and D. Ebert, “Volume illustration: Nonphotorealistic rendering of volume models,” IEEE Trans. Visualization and Computer Graphics 7(3), 253–264 (2001).
[Crossref]

Rollins, A. M.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Sarunic, M. V.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref] [PubMed]

Schmitt, J. M.

Schuman, J. S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Shen, L.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

Shieh, C.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Siebelmann, S.

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

Smith, G. M.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Sonka, M.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Srivastava, S. K.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Steven, P.

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Tam, T.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Tao, Y. K.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

Todorich, B.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Toth, C.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

Toth, C. A.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Tran-Viet, D.

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Trépanier, F.

Udupa, J. K.

J. K. Udupa, H.-M. Hung, and K.-S. Chuang, “Surface and volume rendering in three-dimensional imaging: A comparison,” J. Digit. Imaging 4(3), 159–168 (1991).
[Crossref] [PubMed]

Vann, R.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Velten, K.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Viehland, C.

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

Waterman, G.

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

Wieser, W.

Winter, C.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Winter, K. P.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Wollstein, G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Wong, A.

Wong, K.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Zeiler, F.

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Zhang, K.

Acta Ophthalmologica (1)

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

Arch. Ophthalmol. (1)

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Br. J. Ophthalmol. (1)

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).
[Crossref] [PubMed]

Commun. ACM (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[Crossref]

Cornea (1)

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy,” Cornea 34(12), 1606–1610 (2015).
[Crossref] [PubMed]

Curr. Eye Res. (1)

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Curr. Eye Res. 40(12), 1288–1291 (2015).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref] [PubMed]

IEEE Trans. Computer Graphics and Applications (2)

T. R. Nelson and T. T. Elvins, “Visualization of 3D ultrasound data,” IEEE Trans. Computer Graphics and Applications 13(6), 50–57 (1993).
[Crossref]

M. Levoy, “Display of surfaces from volume data,” IEEE Trans. Computer Graphics and Applications 8(3), 29–37 (1988).
[Crossref]

IEEE Trans. Med. Imaging (1)

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

IEEE Trans. Visualization and Computer Graphics (1)

P. Rheingans and D. Ebert, “Volume illustration: Nonphotorealistic rendering of volume models,” IEEE Trans. Visualization and Computer Graphics 7(3), 253–264 (2001).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (8)

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, C. Chukwurah, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Real-time 4D Stereoscopic Visualization of Human Ophthalmic Surgery with Swept-Source Microscope Integrated Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56, 4085 (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel Microscope-Integrated Stereoscopic Heads-up Display for Intrasurgical OCT in Ophthalmic Surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3514 (2015).
[PubMed]

O. Carrasco-Zevallos, B. Keller, C. Viehland, P. Hahn, A. N. Kuo, P. J. DeSouza, C. A. Toth, and J. A. Izatt, “Real-time 4D visualization of surgical maneuvers with 100kHz swept-source Microscope Integrated Optical Coherence Tomography (MIOCT) in model eyes,” Invest. Ophthalmol. Vis. Sci. 55, 1633 (2014).

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of Microscope Integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

J. Biomed. Opt. (3)

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 026014 (2010).

S. Siebelmann, P. Steven, D. Hos, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 016005 (2016).

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref] [PubMed]

J. Digit. Imaging (1)

J. K. Udupa, H.-M. Hung, and K.-S. Chuang, “Surface and volume rendering in three-dimensional imaging: A comparison,” J. Digit. Imaging 4(3), 159–168 (1991).
[Crossref] [PubMed]

J. Signal Process. Syst. Signal Image Video Technol. (1)

G. Perrot, S. Domas, and R. Couturier, “Fine-tuned High-speed Implementation of a GPU-based Median Filter,” J. Signal Process. Syst. Signal Image Video Technol. 75(3), 185–190 (2014).
[Crossref]

JAMA Ophthalmol. (2)

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (3)

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

C. Glittenberg, I. Krebs, C. Falkner-Radler, F. Zeiler, P. Haas, S. Hagen, and S. Binder, “Advantages of using a ray-traced, three-dimensional rendering system for spectral domain Cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface,” Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

PLoS One (1)

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

O. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, B. Todorich, C. Shieh, A. Kuo, C. Toth, and J. A. Izatt, “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).

Retina (5)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

Transl. Vis. Sci. Technol. (1)

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device,” Transl. Vis. Sci. Technol. 4(4), 1–9 (2015).
[PubMed]

Ultrasound Med. Biol. (1)

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

Other (9)

NVIDIA, “CUDA Programming Guide 7.5,” (2015).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. Hahn, A. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express (to be published).

S. Mangalesh, X. Chen, A. Dandridge, D. Tran-Viet, C. Viehland, F. LaRocca, J. Izatt, and C. A. Toth, “Three-dimensional assessment of vascular changes secondary to neovascularization in retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. (to be published).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” in Biomedical Optics (BiOS)2008, (International Society for Optics and Photonics, 2008), 68440C–68440C–68448.

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” in SPIE BiOS: Biomedical Optics, (International Society for Optics and Photonics, 2009), 716312–716312–716312.

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina (Philadelphia, Pa.) (2015).

J. Migacz, O. Carrasco-Zevallos, P. Hahn, A. Kuo, C. Toth, and J. A. Izatt, “Intraoperative retinal optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications (2015), pp. 1771–1796.

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, “Combining optical coherence tomography (OCT) with an operating microscope,” in Advances in Medical Engineering (Springer, 2007), pp. 343–348.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography.”

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (821 KB)      Progressive comparison of volume rendering steps
» Visualization 2: AVI (4772 KB)      Comparison of un-enhanced vs enhanced volume rendering

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Left: Flowchart for the enhanced ray casting pipeline. Steps in the conventional ray casting pipeline are shown in square blocks while additions are shown in oval blocks. Right: Diagram illustrating ray casting in two dimensions.
Fig. 2
Fig. 2 Left: SS-MIOCT system in use during human macular surgery. Right: Resolution and fall off plot for the SS-MIOCT system.
Fig. 3
Fig. 3 Computation of the median via forgetful selection for a sample region of 7 pixels [54].
Fig. 4
Fig. 4 Progressive addition of steps in the enhanced volume rendering pipeline (see Visualization 1): (a) basic ray casting (b) volumetric filtering (c) edge enhancement (d) feature enhancement (e) depth based shading (f) Phong shading. The volume is of coated forceps lifting a blood vessel in ex-vivo porcine retina. Volumes were acquired at 300 A-scans per B-scan and 128 B-scans per volume.
Fig. 5
Fig. 5 Comparison of regular ray casting (left), enhanced ray casting with retinal settings (center), and enhanced ray casting with anterior segment settings (right) of the anterior segment of a healthy of a consented subject. Complex conjugate resolved SS-OCT imaging was performed using a long depth sample arm. Volumes were acquired at 1000 A-scans per B-scan and 128 B-scans per volume.
Fig. 6
Fig. 6 Left: Timing diagram showing the acquisition and rendering pipeline for multiple groups of 16 B-scans. Right: Expanded view of a single acquisition. Kernels in the acquisition, filtering, and rendering pipelines are indicated with blue, purple, and green boxes respectively
Fig. 7
Fig. 7 Intraoperative MIOCT volume of forceps peeling a membrane rendered as a stereoscopic pair, with a 9 degree offset. This data was displayed live to the surgeon through a novel stereoscopic heads-up display incorporated into the surgical microscope. Volumes were acquired at 300 A-scans per B-scan and 128 B-scans per volume over a 5mmx5mm region. Volumes were re-rendered for display outside of the OR using the same pipeline as the intraoperative software.
Fig. 8
Fig. 8 Comparison of intraoperative volumes with (left) and without (right) enhanced volume rendering (see Visualization 2). Each pair of renders were taken from the same angle and annotations were placed at the same location in the renders. Top: Intraoperative visualization of a pre vitrectomy macular hole (MH) with an epiretinal membrane (ERM) causing macular pucker with (left) and without (right) enhanced volume rendering. Middle: Visualization of the same volume from a different angle. Bottom: Image of the macula post vitrectomy and ILM peel showing the remainder of the ERM, the macular hole starting to close and the foveal elevations (FE) caused by the surgeon’s forceps. Volumes were taken at 512 A-scans per B-scan and 128 B-scans per volume over a 5mmx5mm region. Renders were re-rendered for display outside of the OR using the same pipeline as the intraoperative software.
Fig. 9
Fig. 9 Volume visualization (top) and B-scans (bottom) of an inter-operative ILM peel around a macular hole (MH) with a diamond dusted membrane scraper (MS). The track (T) of the instrument across the retina left a transient groove in the surface which is highlighted in red. Volumes were acquired at 300 A-scans per B-scan and 128 B-scans per volume over a 5mmx5mm region. B-scans are tracked to the tool location in post processing. Renders were re-rendered for display outside of the OR using the same pipeline as the intraoperative software.
Fig. 10
Fig. 10 Visualizations of pathologic neovascularization in retinopathy of prematurity in an infant who was born three months premature and was imaged two months later. Fan-shaped neovascularization (NV) is visible on the back left corner with smaller neovascular buds (NB) at the right. Volumes were acquired with a Bioptigen hand held SD-OCT system at 1000 A-scans per B-scan and 64 B-scans per volume.

Tables (1)

Tables Icon

Table 1 Default Volume Rendering Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= i=0 M1 c( r i )α( r i ) k=0 i (1α( r k )) .
α g ( r i )=α( r i )(1+ k g1 | ( r i ) | k g2 ).
α gf ( r i )= α g ( r i )[ 1+ k f1 ( 1| ( r i )V | ) k f2 ].
c d ( r i )=c( r i )( 1 k d1 d v k d2 ) +  k d3 d v k d2 c b .
c pd ( r i )= c d ( r i )( k p1 + k p2 (N( r i )L)+ k p3 (N( r i )H) k p4 ).

Metrics