Abstract

In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores’ lifetime, which are however in the (sub-)nanosecond range. We have integrated a single-photon pixel array, based on standard CMOS SPADs (single-photon avalanche diodes), in a compact, time-gated measurement system, named FluoCam. In vivo measurements were carried out with indocyanine green (ICG)-modified derivatives targeting the αvβ3 integrin, initially on a genetically engineered mouse model of melanoma injected with ICG conjugated with tetrameric cyclic pentapeptide (ICG−E[c(RGD f K)4]), then on mice carrying tumour xenografts of U87-MG (a human primary glioblastoma cell line) injected with monomeric ICG−c(RGD f K). Measurements on tumor, muscle and tail locations allowed us to demonstrate the feasibility of in vivo lifetime measurements with the FluoCam, to determine the characteristic lifetimes (around 500 ps) and subtle lifetime differences between bound and unbound ICG-modified fluorophores (10% level), as well as to estimate the available photon fluxes under realistic conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

14 April 2016: A correction was made to Fig. 2.


OSA Recommended Articles
Real-time fluorescence lifetime imaging system with a 32 × 32 0.13μm CMOS low dark-count single-photon avalanche diode array

Day-Uei Li, Jochen Arlt, Justin Richardson, Richard Walker, Alex Buts, David Stoppa, Edoardo Charbon, and Robert Henderson
Opt. Express 18(10) 10257-10269 (2010)

In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH

Mohammad A. Yaseen, Sava Sakadžić, Weicheng Wu, Wolfgang Becker, Karl A. Kasischke, and David A. Boas
Biomed. Opt. Express 4(2) 307-321 (2013)

Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging

S. Kumar, C. Dunsby, P. A. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. W. French
Opt. Express 15(20) 12548-12561 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
    [Crossref] [PubMed]
  2. A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
    [Crossref] [PubMed]
  3. S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
    [Crossref]
  4. S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
    [Crossref] [PubMed]
  5. M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K (2008).
    [Crossref]
  6. S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
    [PubMed]
  7. F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).
  8. S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
    [Crossref]
  9. W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
    [Crossref] [PubMed]
  10. “Product Insert: Indocyanine Green (IC-Green™),” (2007). URL http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/011525s017lbl.pdf .
  11. J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
    [Crossref]
  12. J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
    [Crossref]
  13. F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis,” Mol. Pharmaceutics 9(11), 2961–2973 (2012).
    [Crossref]
  14. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
    [Crossref] [PubMed]
  15. S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).
  16. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
    [Crossref]
  17. N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
    [Crossref]
  18. Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
    [Crossref] [PubMed]
  19. Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009).
    [Crossref] [PubMed]
  20. S. Shrestha, B. E. Applegate, J. Park, X. Xiao, P. Pande, and J. A. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
    [Crossref] [PubMed]
  21. S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
    [Crossref]
  22. A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33(5), 470–472 (2008).
    [Crossref] [PubMed]
  23. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
    [Crossref]
  24. F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
    [Crossref]
  25. F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
    [Crossref]
  26. C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
    [Crossref]
  27. H. A. R. Homulle, “Development of a Multichannel TCSPC System in a Spartan 6 FPGA,” Master’s thesis, TU Delft (2014). URL http://repository.tudelft.nl/view/ir/uuid%3A86ecbaba-0711-40e8-8b10-1001b3772206/ .
  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, USA, 1983).
    [Crossref]
  29. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
    [Crossref]
  30. P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
    [Crossref]
  31. D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
    [Crossref]
  32. D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
  33. J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134(1), 371–378 (1997).
    [Crossref]
  34. D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
    [Crossref]
  35. S. Moon, Y. Won, and D. Y. Kim, “Analog mean-delay method for high-speed fluorescence lifetime measurement,” Opt. Express 17(4), 2834–2849 (2009).
    [Crossref] [PubMed]
  36. T. Luo, “Femtosecond Time-Resolved Studies on the Reaction Pathways for the Generation of Reactive Oxygen Species in Photodynamic Therapy by Indocyanine Green,” Master’s thesis, University of Waterloo, Canada (2008). URL https://uwspace.uwaterloo.ca/handle/10012/3972 .
  37. M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).
  38. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Germany, 2005).
    [Crossref]
  39. W. Becker, The bh TCSPC Handbook, 5th ed. (Becker & Hickl GmbH, Berlin, Germany, 2012).
  40. Y. Ye and X. Chen, “Integrin Targeting for Tumor Optical Imaging,” Theranostics 1, 102–126 (2011).
    [Crossref] [PubMed]
  41. W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
    [Crossref]
  42. M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
    [Crossref]
  43. Y. Wu, W. Cai, and X. Chen, “Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers,” Mol. Imag. Biol. 8(4), 226–236 (2006).
    [Crossref]
  44. L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
    [Crossref] [PubMed]
  45. M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
    [Crossref]
  46. M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).
  47. S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
    [Crossref]
  48. S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
    [Crossref] [PubMed]
  49. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

2016 (1)

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

2015 (1)

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

2014 (2)

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

2013 (2)

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

2012 (5)

W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
[Crossref] [PubMed]

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis,” Mol. Pharmaceutics 9(11), 2961–2973 (2012).
[Crossref]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

2011 (4)

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
[Crossref]

Y. Ye and X. Chen, “Integrin Targeting for Tumor Optical Imaging,” Theranostics 1, 102–126 (2011).
[Crossref] [PubMed]

2010 (7)

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[PubMed]

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

S. Shrestha, B. E. Applegate, J. Park, X. Xiao, P. Pande, and J. A. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
[Crossref] [PubMed]

S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
[Crossref]

2009 (6)

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009).
[Crossref] [PubMed]

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[Crossref]

S. Moon, Y. Won, and D. Y. Kim, “Analog mean-delay method for high-speed fluorescence lifetime measurement,” Opt. Express 17(4), 2834–2849 (2009).
[Crossref] [PubMed]

2008 (3)

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K (2008).
[Crossref]

A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33(5), 470–472 (2008).
[Crossref] [PubMed]

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

2006 (1)

Y. Wu, W. Cai, and X. Chen, “Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers,” Mol. Imag. Biol. 8(4), 226–236 (2006).
[Crossref]

2005 (2)

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

2004 (2)

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
[Crossref]

2000 (1)

S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
[Crossref]

1999 (1)

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

1997 (1)

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134(1), 371–378 (1997).
[Crossref]

1981 (1)

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[Crossref]

Abbruzzese, J. L.

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Achilefu, S.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Akers, W.

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Akid, A. T.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Alander, J. T.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Almutairi, A.

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Anasagasti, L.

S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
[Crossref]

Andrews, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

Applegate, B. E.

Arlt, J.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

Ashitate, Y.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Azar, F.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Baatenburg de Jong, R. J.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Bacskai, B. J.

Becker, W.

W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
[Crossref] [PubMed]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Germany, 2005).
[Crossref]

W. Becker, The bh TCSPC Handbook, 5th ed. (Becker & Hickl GmbH, Berlin, Germany, 2012).

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Berger, M.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Biffi, S.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Bloch, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

Boas, D. A.

Boland, G. M.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Breton, A. L.

F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis,” Mol. Pharmaceutics 9(11), 2961–2973 (2012).
[Crossref]

Bruschini, C.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Burri, S.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

Buts, A.

Cai, W.

Y. Wu, W. Cai, and X. Chen, “Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers,” Mol. Imag. Biol. 8(4), 226–236 (2006).
[Crossref]

Cao, J.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Charbon, E.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Charnsangavej, C.

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Chen, X.

Y. Ye and X. Chen, “Integrin Targeting for Tumor Optical Imaging,” Theranostics 1, 102–126 (2011).
[Crossref] [PubMed]

Y. Wu, W. Cai, and X. Chen, “Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers,” Mol. Imag. Biol. 8(4), 226–236 (2006).
[Crossref]

Chin, L.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Choi, H. S.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[PubMed]

S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
[Crossref]

Chuang, F. S.

Cooper, Z. A.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Danhier, F.

F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis,” Mol. Pharmaceutics 9(11), 2961–2973 (2012).
[Crossref]

Delgado, J.

S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
[Crossref]

Deng, D.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Donohoe, K. J.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Driel, P. B. A. A.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Dubikovskaya, E.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Elson, D. S.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009).
[Crossref] [PubMed]

Enderlein, J.

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134(1), 371–378 (1997).
[Crossref]

Erdmann, R.

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134(1), 371–378 (1997).
[Crossref]

Farwell, D. G.

Favi, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

Fishburn, M.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Fishburn, M. W.

Flaherty, K. T.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Frangioni, J. V.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[PubMed]

S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
[Crossref]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Fréchet, J. M.

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Frederick, D. T.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Gandjbakhche, A.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

Garrovo, C.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Gasparini, L.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).

Gelovani, J. G.

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Gerega, A.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Gersbach, M.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Gibbs-Strauss, S. L.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Gioux, S.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
[Crossref]

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[PubMed]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Goiffon, R. J.

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Gorin, F.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Goutayer, M.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Grigoriev, E.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Gu, Y.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Guillermet, S.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Guo, K.

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Gurfinkel, M.

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Halin, I.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Hall, P.

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[Crossref]

Halmer, D.

D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
[Crossref]

Hanahan, D.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

Hansroul, M.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

Hatami, N.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Helms, T. L.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Henderson, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Hering, P.

D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
[Crossref]

Homicsko, K.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

Homulle, H.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

Homulle, H. A. R.

H. A. R. Homulle, “Development of a Multichannel TCSPC System in a Spartan 6 FPGA,” Master’s thesis, TU Delft (2014). URL http://repository.tudelft.nl/view/ir/uuid%3A86ecbaba-0711-40e8-8b10-1001b3772206/ .

Huang, D. C.

N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
[Crossref]

Hutteman, M.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Jiang, S.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Jo, J. A.

Josserand, V.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Kaartinen, I.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Kagawa, K.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Kaijzel, E. L.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Kamara, J.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Kawahito, S.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Kawata, Y.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Ke, S.

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Keereweer, S.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Kerrebijn, J. D. F.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Khamene, A.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Kianzad, V.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Kim, D. Y.

Kluter, T.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

Kumar, A. T. N.

Kuppen, P. J. K.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Kwong, L. N.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Laakso, A.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, USA, 1983).
[Crossref]

Lee, H.

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

Lesage, F.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

Li, C.

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Li, D.-U.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Li, S.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Li, Z.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Liang, K.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

Liebert, A.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Liefers, G.-J.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Lomnes, S. J.

S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
[Crossref]

Lorusso, V.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Löwik, C. W. G. M.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Luo, T.

T. Luo, “Femtosecond Time-Resolved Studies on the Reaction Pathways for the Generation of Reactive Oxygen Species in Photodynamic Therapy by Indocyanine Green,” Master’s thesis, University of Waterloo, Canada (2008). URL https://uwspace.uwaterloo.ca/handle/10012/3972 .

Ma, G.

N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
[Crossref]

Macor, P.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Mandai, S.

Marcu, L.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009).
[Crossref] [PubMed]

Maruyama, Y.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Massari, N.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).

Matsui, A.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

McIntosh, L.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

Meier, J.

Michalet, X.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

Michielin, O.

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Mieog, J. S. D.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Milej, D.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Miller, J. P.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Mills, G. B.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Mincu, N.

N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
[Crossref]

Miwa, M.

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K (2008).
[Crossref]

Mizeret, J.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

Monnier, F.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

Moon, S.

Muehlethaler, K.

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Mürtz, M.

D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
[Crossref]

Navarro, F. P.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Ngo, L.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Ngo, L. H.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

Oketokoun, R.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Pande, P.

Park, J.

Pätilä, T.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Perenzoni, D.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).

Perenzoni, M.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).

Perez, A.

S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
[Crossref]

Phipps, J.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009).
[Crossref] [PubMed]

Piche, M.

N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
[Crossref]

Poirier, B.

Powolny, F.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Preat, V.

F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis,” Mol. Pharmaceutics 9(11), 2961–2973 (2012).
[Crossref]

Prior, J.

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Prior, J. O.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

Protopopov, A.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Putter, H.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Qian, Z.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Que, I.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Rae, B.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[Crossref]

Raymond, S. B.

Regazzoni, F.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 589 (2014).
[Crossref]

Renshaw, D.

Richardson, J.

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Rimoldi, D.

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Rizo, P.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Sawosz, P.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Schrot, R. J.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Secco, E.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Selinger, B.

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[Crossref]

Seo, M.-W.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Seth, S.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Shikayama, T.

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K (2008).
[Crossref]

Shrestha, S.

Sinisi, R.

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

Smit, V. T. H. B. M.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Snoeks, T. J. A.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Soltysinski, T.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Song, X.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Spillmann, T.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Stepinac, T.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

Stockdale, A.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

Stolik, S.

S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
[Crossref]

Stoppa, D.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Stoy, H.

Studzinski, A.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

Sun, Y.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009).
[Crossref] [PubMed]

Tedesco, F.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Teranishi, N.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Texier, I.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

Tian, J.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Tinling, S.

Toczylowska, B.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Tripodo, C.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Troyan, S. L.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Tuchin, V. V.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Vahrmeijer, A. L.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Välisuo, P.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

van de Velde, C. J.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

van den Bergh, H.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

van der Vorst, J. R.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

Veerappan, C.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Velde, C. J. H.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Venermo, M.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

Vinet, F.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

von Basum, G.

D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
[Crossref]

Vorst, J. R.

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Wagnières, G.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

Walker, R.

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Wan, S.

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

Wang, W.

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Wargo, J. A.

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Won, Y.

Wu, Q.

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Wu, Y.

Y. Wu, W. Cai, and X. Chen, “Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers,” Mol. Imag. Biol. 8(4), 226–236 (2006).
[Crossref]

Xiao, X.

Xie, B.

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Yasutomi, K.

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Ye, Y.

Y. Ye and X. Chen, “Integrin Targeting for Tumor Optical Imaging,” Theranostics 1, 102–126 (2011).
[Crossref] [PubMed]

Yee, M.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

Zolek, N.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

Zorzet, S.

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

Annals of Surgical Oncology (2)

J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. Vorst, A. Stockdale, G.-J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Löwik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer,” Annals of Surgical Oncology 18(9), 2483–2491 (2011).
[Crossref] [PubMed]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping,” Annals of Surgical Oncology 16(10), 2943–2952 (2009).
[Crossref] [PubMed]

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

Contrast Media & Mol. Imaging (1)

J. Cao, S. Wan, J. Tian, S. Li, D. Deng, Z. Qian, and Y. Gu, “Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis,” Contrast Media & Mol. Imaging 7(4), 390–402 (2012).
[Crossref]

IEEE J. Solid-State Circuits (2)

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009).
[Crossref]

M.-W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I. Halin, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51(1), 141–154 (2016).
[Crossref]

Int. J. Biomed. Imaging (1)

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 7 (2012).
[Crossref]

J. Biomed. Opt. (6)

M. Gurfinkel, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quantifying molecular specificity of αvβ3 integrin-targeted optical contrast agents with dynamic optical imaging,” J. Biomed. Opt. 10(3), 034019 (2005).
[Crossref]

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[Crossref]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).

S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 199–207 (2010).
[Crossref]

J. Microsc. (1)

W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol., B (1)

S. Stolik, J. Delgado, A. Perez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human ex vivo tissues,” J. Photochem. Photobiol., B 57(2), 90–93 (2000).
[Crossref]

J. Phys. Chem. (1)

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[Crossref]

Mol. Imag. Biol. (2)

Y. Wu, W. Cai, and X. Chen, “Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers,” Mol. Imag. Biol. 8(4), 226–236 (2006).
[Crossref]

S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical Image-guided Surgery - Where Do We Stand?” Mol. Imag. Biol. 13(2), 199–207 (2010).
[Crossref]

Mol. Imaging (3)

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[PubMed]

S. Biffi, C. Garrovo, P. Macor, C. Tripodo, S. Zorzet, E. Secco, F. Tedesco, and V. Lorusso, “In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging,” Mol. Imaging 7(6), 272–282 (2008).

W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, and C. Li, “Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts,” Mol. Imaging 3(4), 343–351 (2004).
[Crossref]

Mol. Pharmaceutics (1)

F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis,” Mol. Pharmaceutics 9(11), 2961–2973 (2012).
[Crossref]

Nature Reviews Clinical Oncology (1)

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nature Reviews Clinical Oncology 10(9), 507–518 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134(1), 371–378 (1997).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (5)

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K (2008).
[Crossref]

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L (2009).

N. Mincu, D. C. Huang, M. Piche, and G. Ma, “Quantitative in vivo lifetime imaging using a time-domain platform with a supercontinuum tunable laser for extended spectral coverage,” Proc. SPIE 7910, 79101K (2011).
[Crossref]

F. Powolny, C. Bruschini, E. Dubikovskaya, E. Grigoriev, O. Michielin, K. Muehlethaler, J. Prior, D. Rimoldi, R. Sinisi, and E. Charbon, “Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 8798, 879806 (2013).
[Crossref]

F. Powolny, K. Homicsko, R. Sinisi, C. Bruschini, E. Grigoriev, H. Homulle, J. O. Prior, D. Hanahan, E. Dubikovskaya, and E. Charbon, “Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability,” Proc. SPIE 9129, 912938 (2014).
[Crossref]

Rev. Sci. Instrum. (2)

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[Crossref]

D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75(6), 2187–2191 (2004).
[Crossref]

The Journal of Clinical Investigation (1)

L. N. Kwong, G. M. Boland, D. T. Frederick, T. L. Helms, A. T. Akid, J. P. Miller, S. Jiang, Z. A. Cooper, X. Song, S. Seth, J. Kamara, A. Protopopov, G. B. Mills, K. T. Flaherty, J. A. Wargo, and L. Chin, “Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma,” The Journal of Clinical Investigation 125(4), 1459–1470 (2015).
[Crossref] [PubMed]

Theranostics (1)

Y. Ye and X. Chen, “Integrin Targeting for Tumor Optical Imaging,” Theranostics 1, 102–126 (2011).
[Crossref] [PubMed]

Other (9)

H. A. R. Homulle, “Development of a Multichannel TCSPC System in a Spartan 6 FPGA,” Master’s thesis, TU Delft (2014). URL http://repository.tudelft.nl/view/ir/uuid%3A86ecbaba-0711-40e8-8b10-1001b3772206/ .

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, USA, 1983).
[Crossref]

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” in Solid-State Circuits Conference (ISSCC), 2015 IEEE International, pp. 1–3 (2015).

T. Luo, “Femtosecond Time-Resolved Studies on the Reaction Pathways for the Generation of Reactive Oxygen Species in Photodynamic Therapy by Indocyanine Green,” Master’s thesis, University of Waterloo, Canada (2008). URL https://uwspace.uwaterloo.ca/handle/10012/3972 .

M. Y. Berezin, H. Lee, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. Fréchet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Engineering in Medicine and Biology Society, pp. 114–117 (2009).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Germany, 2005).
[Crossref]

W. Becker, The bh TCSPC Handbook, 5th ed. (Becker & Hickl GmbH, Berlin, Germany, 2012).

“Product Insert: Indocyanine Green (IC-Green™),” (2007). URL http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/011525s017lbl.pdf .

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference (ISSCC), 2011 IEEE International, pp. 312–314 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1:
Fig. 1:

Schematic overview of the FluoCam fluorescence imaging system composed of the SPSD single-photon camera (on the right), and optical path (on the left), with lenses [L1/L2], wavelength filters [WF1/WF2] and ps-based laser illumination source [I]. The laser illumination is reflected by the dichroic mirror [D] onto the sample, whereas the fluorescence light passes through the dichroic due to the wavelength shift. The fluorescence light is integrated in the camera chip in counters C0/C2, whose data is transmitted to a host PC through a USB interface. The delay is incremented in time steps as fine as 12.3 ps to cover the fluorescence response.

Fig. 2:
Fig. 2:

Detailed overview of the FluoCam camera system. Top: SPSD-based camera comprising (from left to right) the SPSD chip with the FPGA control board, a delay lines board, and a power management board. Bottom: chip micrograph and pixel schematic [24, 26].

Fig. 3:
Fig. 3:

(a) Time-gated fluorescence lifetime reconstruction principle as applied to the FluoCam measurements. The laser trigger is used both as system clock and as trigger of the laser pulse. The laser pulse is pointed at the sample which generates an exponential fluorescence response. This fluorescence response is finally measured by the SPAD camera. Depending on the delay step (N×12.3 ps) between laser trigger and counter switch, the events are stored in either the C0 or the C2 counter. (b) IRF and the fluorescence exponential convolved with the IRF, i.e. the signal detected on the camera. (c) The integrated responses as measured by the camera in the C0 counter.

Fig. 4:
Fig. 4:

Signal processing chain (LSM fitting approach). Online measurements are carried out in parallel over the whole imager, the offline processing is done sequentially.

Fig. 5:
Fig. 5:

Signal processing steps: (a) correction of the non-linearities; the calibrated delay transfer curve (as specified by the manufacturer) is corrected by removing redundant sequences in the delays. After fitting the corrected transfer curve, a resolution of 12.3 ps is reached. (b) Raw counter signals C0 and C2 and the corresponding total intensity, featuring non-linearities and readout spikes. (c) Counter signals corrected for non-linearities with the procedure from (a) and applying a moving average filter. (d) Final intensity normalized C0 signals for both cooled / uncooled camera systems, the noise being significantly higher for the uncooled system.

Fig. 6:
Fig. 6:

(a) IRF compensation simulation principle. Random events are generated with an exponential distribution (with lifetime τ) over the IRF, which determines the amount of events to be generated at each time step (10×1 million per inserted lifetime). (b) For τ ranging from 0 to 1.2 ns, the procedure described in (a) is applied, followed by a standard exponential fit (resulting in an extracted lifetime τt), leading to a lifetime correction look-up table.

Fig. 7:
Fig. 7:

Extracted lifetime and intensity for ICG diluted in milk (concentration: 25 µM). (a) Extracted lifetime (3D bars) showing the uniform lifetime extraction ability with respect to the measured pixel intensity (top 2D plane). (b) Scatter plot of the extracted lifetime versus pixel intensity. The lifetime oscillations with intensity are likely due to a sub-optimal optical set-up, which slightly distorted the fluorescence signal. Their effect on the average lifetime is minor.

Fig. 8:
Fig. 8:

(a) Extracted lifetime obtained with the algorithm proposed in Fig. 4 and a CMM algorithm, compared with [29], and (b) spot SNR vs. ICG molar concentration in various media (water, milk and blood). (c) Extracted lifetime and error obtained for different delay lines step sizes (N×12.3 ps) for three samples. Results from literature have been interpolated to match the concentrations used in our measurements.

Fig. 9:
Fig. 9:

Comparison of extracted lifetimes for untargeted vs. targeted ICG in milk (concentration: 20 µM). Fluorescent probes used: (a) ICG, (b) ICG−c(RGD f K), (c) ICG−E[c(RGD f K)2]. The targeted ICG shows a lifetime about 60 ps higher than untargeted ICG.

Fig. 10:
Fig. 10:

Measurements of in vitro cultured melanoma cells expressing αvβ3 integrin (SK-MEL-37 cell line) vs. melanoma cells not expressing αvβ3 integrin (HEK-293T embryonic kidney cells). (a) Extracted lifetime and (b) spot SNR versus ICG-c(RGD f K) concentration.

Fig. 11:
Fig. 11:

(a) ICG−E[c(RGD f K)4] in vivo (melanoma mouse model) fluorescence intensity measured 24 hours after injection with IVIS Spectrum and with (b) FluoCam targeted on the tumor (mouse ear), showing pho-tobleaching in the brightest pixels during the 7 minutes acquisition time. No usable fluorescence signal was detected elsewhere with the FluoCam.

Fig. 12:
Fig. 12:

In vivo (melanoma mouse model) extracted lifetime and intensity on the mouse tumor (ear) 24 hours after injection. (a) Extracted lifetime (3D bars) and measured pixel intensity (2D plane). (b) Scatter plot of the extracted lifetime versus pixel intensity.

Fig. 13:
Fig. 13:

ICG-c(RGD f K) in vivo (glioblastoma mouse model) fluorescence lifetime and spot SNR measurements. The injected concentration of ICG-c(RGD f K) is 30 nmol (50 µg). (a) Extracted lifetimes for mouse tumor (bound), muscle (partially bound) and tail (unbound fluorophore), both 0.5–2.5 and 24 hours after injection. (b) Signal-to-Noise ratio both 0.5–2.5 and 24 hours after injection.

Tables (2)

Tables Icon

Table 1: Overview of FluoCam characteristics at system, chip and pixel level.

Tables Icon

Table 2: in vivo (melanoma mouse model) lifetime results for ICG−E[c(RGD f K)4], including with a simulated 4× delay step (results for two consecutive measurements M1/M2, whenever available).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = g ( t ) * I R F ( t )
C 2 I R F ( t ) = 0 t I R F ( s ) d s = I R F ( t ) * w ( t ) , t T
C 2 f ( t ) = 0 t f ( s ) d s = f ( t ) * w ( t ) = I R F ( t ) * w ( t ) * g ( t ) = I R F ( t ) * ( 1 e t τ ) , t T
C 0 ( t ) = 1 C 2 ( t )
f ( t ) = d C 2 f ( f ) d t , t T
ε i = 1 M [ C 0 m ( i ) C 0 t ( i ) ] 2
ε i = 1 M [ C 0 m ( i ) A e i Δ τ m ] 2
ε i = 1 M [ C 0 t ( i ) A e i Δ τ t ] 2
S N R 20 log 10 ( Φ t o t / N t o t Φ t o t / N t o t + CDR )
S N R 20 log 10 ( τ σ )

Metrics