Abstract

A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi
Opt. Express 23(3) 3647-3656 (2015)

Video-rate large-scale imaging with Multi-Z confocal microscopy

Amaury Badon, Seth Bensussen, Howard J. Gritton, Mehraj R. Awal, Christopher V. Gabel, Xue Han, and Jerome Mertz
Optica 6(4) 389-395 (2019)

Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues

Jun Miyazaki, Hiromichi Tsurui, and Takayoshi Kobayashi
Biomed. Opt. Express 6(9) 3217-3224 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
    [Crossref] [PubMed]
  2. D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
    [Crossref] [PubMed]
  3. A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
    [Crossref] [PubMed]
  4. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
    [Crossref]
  5. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy,” Opt. Express 23(3), 3647–3656 (2015).
    [Crossref] [PubMed]
  6. C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
    [Crossref] [PubMed]
  7. C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
    [Crossref] [PubMed]
  8. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
    [Crossref] [PubMed]
  9. J. Miyazaki, H. Tsurui, and T. Kobayashi, “Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues,” Biomed. Opt. Express 6(9), 3217–3224 (2015).
    [Crossref] [PubMed]
  10. A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
  11. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  12. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
    [Crossref] [PubMed]
  13. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [Crossref] [PubMed]
  14. S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
    [Crossref] [PubMed]
  15. W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
    [Crossref] [PubMed]
  16. A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
    [Crossref] [PubMed]
  17. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Sensitivity enhancement of photothermal microscopy with radially segmented balanced detection,” Opt. Lett. 40(4), 479–482 (2015).
    [Crossref] [PubMed]
  18. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
    [Crossref]
  19. P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
    [Crossref] [PubMed]
  20. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [Crossref] [PubMed]
  21. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
    [Crossref] [PubMed]
  22. C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
    [Crossref] [PubMed]
  23. C. Krafft, “Bioanalytical applications of Raman spectroscopy,” Anal. Bioanal. Chem. 378(1), 60–62 (2004).
    [Crossref] [PubMed]
  24. N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
    [Crossref] [PubMed]
  25. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
    [Crossref] [PubMed]
  26. S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
    [Crossref] [PubMed]
  27. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15(19), 12076–12087 (2007).
    [Crossref] [PubMed]
  28. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  29. B. R. Hammond and L. M. Renzi, “Carotenoids,” Adv. Nutr. 4(4), 474–476 (2013).
    [Crossref] [PubMed]
  30. E. J. Johnson, “A possible role for lutein and zeaxanthin in cognitive function in the elderly,” Am. J. Clin. Nutr. 96(5), 1161S–1165S (2012).
    [Crossref] [PubMed]
  31. F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
    [Crossref] [PubMed]
  32. D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
    [Crossref] [PubMed]
  33. J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
    [Crossref] [PubMed]

2015 (5)

J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy,” Opt. Express 23(3), 3647–3656 (2015).
[Crossref] [PubMed]

J. Miyazaki, H. Tsurui, and T. Kobayashi, “Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues,” Biomed. Opt. Express 6(9), 3217–3224 (2015).
[Crossref] [PubMed]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Sensitivity enhancement of photothermal microscopy with radially segmented balanced detection,” Opt. Lett. 40(4), 479–482 (2015).
[Crossref] [PubMed]

2014 (3)

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref] [PubMed]

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

2013 (2)

B. R. Hammond and L. M. Renzi, “Carotenoids,” Adv. Nutr. 4(4), 474–476 (2013).
[Crossref] [PubMed]

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

2012 (6)

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[Crossref] [PubMed]

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

E. J. Johnson, “A possible role for lutein and zeaxanthin in cognitive function in the elderly,” Am. J. Clin. Nutr. 96(5), 1161S–1165S (2012).
[Crossref] [PubMed]

2011 (2)

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

2010 (3)

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

2004 (1)

C. Krafft, “Bioanalytical applications of Raman spectroscopy,” Anal. Bioanal. Chem. 378(1), 60–62 (2004).
[Crossref] [PubMed]

2003 (2)

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

2002 (2)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Aihara, M.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Arunkarthick, S.

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

Ayyadevara, S.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

Beard, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Beleites, C.

C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
[Crossref] [PubMed]

Benseny-Cases, N.

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

Berciaud, S.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Berclaz, C.

Bijeesh, M. M.

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

Blab, G. A.

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Bocchio, N. L.

Bouwens, A.

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Brusnichkin, A. V.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Carney, R. P.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Chang, W.-S.

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

Chong, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Choquet, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Cilesiz, I.

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

Cladera, J.

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

Cognet, L.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref] [PubMed]

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Cotte, M.

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

Cox, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

De Giorgi, F.

de Kock, C. P.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Dombeck, D. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Duff, K.

Duvall, C. L.

Evans, C. L.

Faber, D. J.

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

Ferrer, I.

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Gautier, J.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Gautreau, A.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Giannone, G.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Gibson, M. I.

Goulley, J.

Gouras, G. K.

Hammond, B. R.

B. R. Hammond and L. M. Renzi, “Carotenoids,” Adv. Nutr. 4(4), 474–476 (2013).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holtom, G. R.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Hyman, B. T.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Ichas, F.

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Jathoul, A. P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Johnson, E. J.

E. J. Johnson, “A possible role for lutein and zeaxanthin in cognitive function in the elderly,” Am. J. Clin. Nutr. 96(5), 1161S–1165S (2012).
[Crossref] [PubMed]

Johnson, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Jung, J. M.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Kawasumi, K.

Kesari, S.

Kirsch, M.

C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
[Crossref] [PubMed]

Kitamori, T.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Klementieva, O.

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

Kobayashi, T.

Kowshik, M.

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

Krafft, C.

C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
[Crossref] [PubMed]

C. Krafft, “Bioanalytical applications of Raman spectroscopy,” Anal. Bioanal. Chem. 378(1), 60–62 (2004).
[Crossref] [PubMed]

Kwan, A. C.

Lasne, D.

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Lasser, T.

Laufer, J.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Leduc, C.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Li, H.

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Li, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Link, S.

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

Liu, J. P.

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Lodder, J. C.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Louise Groot, M.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Lounis, B.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref] [PubMed]

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Lu, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lythgoe, M. F.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Mansvelder, H. D.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Marafioti, T.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

McLean, C.

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Meyer, T. A.

Min, W.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Miyazaki, J.

Nandakumar, P.

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Negrean, A.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Ogunlade, O.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Oudjedi, L.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

Pache, C.

Parra-Vasquez, A. N. G.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

Patil, C. A.

Pedley, R. B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Philip, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Pizzey, A. R.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Proskurnin, M. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Pule, M. A.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Renzi, L. M.

B. R. Hammond and L. M. Renzi, “Carotenoids,” Adv. Nutr. 4(4), 474–476 (2013).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Salzer, R.

C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
[Crossref] [PubMed]

Santschi, C.

Sato, K.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Schackert, G.

C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
[Crossref] [PubMed]

Shevtsova, E. F.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Shmookler Reis, R. J.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

Si, S.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Skala, M. C.

Soto-Ribeiro, M.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Stellacci, F.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Tamaki, E.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Tang, Y.

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Testa Silva, G.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Toh, B. H.

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Tokeshi, M.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Treeby, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tsurui, H.

Tucker-Schwartz, J. M.

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

van Gemert, M. J.

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

van Leeuwen, T. G.

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

Varier, G. K.

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

Vermeulen, P.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref] [PubMed]

Villiger, M.

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Vladimirov, Y. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Wang, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Webb, W. W.

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Wehrle-Haller, B.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Witte, S.

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

Wong, S. T.

Wong, T. T.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Xie, X. S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15(19), 12076–12087 (2007).
[Crossref] [PubMed]

Xu, X.

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Young, G. S.

Zhang, E.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Zhou, S.

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Zou, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

ACS Nano (1)

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Adv. Nutr. (1)

B. R. Hammond and L. M. Renzi, “Carotenoids,” Adv. Nutr. 4(4), 474–476 (2013).
[Crossref] [PubMed]

Am. J. Clin. Nutr. (1)

E. J. Johnson, “A possible role for lutein and zeaxanthin in cognitive function in the elderly,” Am. J. Clin. Nutr. 96(5), 1161S–1165S (2012).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Anal. Bioanal. Chem. 389(4), 1133–1142 (2007).
[Crossref] [PubMed]

C. Krafft, “Bioanalytical applications of Raman spectroscopy,” Anal. Bioanal. Chem. 378(1), 60–62 (2004).
[Crossref] [PubMed]

Anal. Chem. (2)

N. Benseny-Cases, O. Klementieva, M. Cotte, I. Ferrer, and J. Cladera, “Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains,” Anal. Chem. 86(24), 12047–12054 (2014).
[Crossref] [PubMed]

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (1)

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11(4), 041120 (2006).
[Crossref] [PubMed]

J. Biophotonics (1)

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

J. Microsc. (2)

S. Arunkarthick, M. M. Bijeesh, G. K. Varier, M. Kowshik, and P. Nandakumar, “Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles,” J. Microsc. 256(2), 111–116 (2014).
[Crossref] [PubMed]

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (2)

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

Mol. Cell. Neurosci. (1)

J. P. Liu, Y. Tang, S. Zhou, B. H. Toh, C. McLean, and H. Li, “Cholesterol involvement in the pathogenesis of neurodegenerative diseases,” Mol. Cell. Neurosci. 43(1), 33–42 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5970–5975 (2011).
[Crossref] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (8502 KB)      Media1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of a photothermal microscope equipped with a Galvano scanner and spatially segmented balanced detection. LD: laser diode, PMSMF: polarization-maintaining single-mode fiber, PM: parabolic mirror, DM: dichroic mirror, PBS: polarizing beam splitter, OL: objective lens, CL: condenser lens, DF: dielectric filter, BFB: bifurcated fiber bundle, BD: balanced detector, LIA: lock-in amplifier, MMF: multimode fiber, PMT: photomultiplier tube.
Fig. 2
Fig. 2 (a) Phothothermal images of a hematoxylin and eosin stained rabbit ovary (a) with and (b) without spatially segmented balanced detection (SBD). Pump and probe beam power incident on the sample were 8 μW and 4 mW, respectively. Image acquisition time was 6 s at 500 x 500 pixels. (c) Intensity profiles along the vertical lines in (a) (blue) and (b) (black).
Fig. 3
Fig. 3 (a) Phothothermal, (b) fluorescence, and (c) overlay images of 1 μm Nile red beads dispersed in PVA on a glass slide. Pump and probe beam power incident on the sample were 0.5 and 4 mW, respectively. Imaging area was 48 x 48 μm. Scale bars in (a)-(c): 10 μm. (d) Images of a single bead with a different focal plane for the bead designated by the arrow in (c). The step size was 0.27 μm. Simultaneous dual-wavelength photothermal images with excitation at (e) 405 nm and (f) 520 nm, and (c) overlay images. Pump beam power for both was 2 mW and probe beam power was 12 mW. Scale bars in (e)-(g): 2 μm.
Fig. 4
Fig. 4 Simultaneous photothermal (PT) and fluorescence (FL) imaging of mouse brain cortex at (a) the surface, (b) layer II/III, and (c) layer IV. Left and center panels show the PT and FL images, respectively, and their overlay is shown in the right panel. The pump and probe beam power incident on the sample were 0.5 and 4 mW, respectively. Image acquisition time was 6 s at 500 x 500 pixels.
Fig. 5
Fig. 5 Close-up photothermal (PT) and fluorescence (FL) images of mouse brain cortex. PT and FL images around (a) a dendrite and (b) axons. Arrows shows bright specks localized around cell bodies, which are attributable to lipofuscins in lysosomes. (c) Reconstructed 3D model of PT signal in cortex. Image size is 23 x 23 x 21 μm with 400 x 400 x 80 voxels and acquisition time was about 9 minutes. A stack of 30 images of brain cortex was acquired by changing the sample position in the axial direction with a step size of 0.68 μm (see Visualization 1). Each image size is 70 x 70 μm with 600 x 600 pixels. Acquisition times were 5 minutes (d) dual-wavelength PT images around a cell body with excitation at 405 nm (left) and 520 nm (center), and their ratio image (right).

Metrics