Abstract

Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy

Yu-Wen Chen, Jun-Yen Guo, Shih-Yu Tzeng, Ting-Chun Chou, Ming-Jen Lin, Lynn Ling-Huei Huang, Chao-Chun Yang, Chao-Kai Hsu, and Sheng-Hao Tseng
Biomed. Opt. Express 7(2) 542-558 (2016)

Broadband absorption and reduced scattering spectra of in-vivo skin can be noninvasively determined using δ-P1 approximation based spectral analysis

Cheng-Hung Hung, Ting-Chun Chou, Chao-Kai Hsu, and Sheng-Hao Tseng
Biomed. Opt. Express 6(2) 443-456 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
    [Crossref] [PubMed]
  2. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
    [Crossref] [PubMed]
  3. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  4. C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
    [Crossref] [PubMed]
  5. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
    [Crossref] [PubMed]
  6. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
    [Crossref] [PubMed]
  7. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  8. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
    [Crossref] [PubMed]
  9. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
    [Crossref] [PubMed]
  10. R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
    [Crossref] [PubMed]
  11. K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
    [Crossref] [PubMed]
  12. B. J. Tromberg, “Diffuse optical methods for assessing breast cancer chemotherapy,” Proc. SPIE 8940, 894018 (2014).
    [Crossref]
  13. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42(9), 1801–1819 (1997).
    [Crossref] [PubMed]
  14. S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
    [Crossref] [PubMed]
  15. E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
    [Crossref] [PubMed]
  16. R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
    [Crossref] [PubMed]
  17. R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
    [Crossref] [PubMed]
  18. S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt. Lett. 30(23), 3165–3167 (2005).
    [Crossref] [PubMed]
  19. S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
    [Crossref] [PubMed]
  20. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
    [Crossref]
  21. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
    [Crossref] [PubMed]
  22. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
    [Crossref] [PubMed]
  23. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
    [Crossref] [PubMed]
  24. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
    [Crossref] [PubMed]
  25. Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
    [Crossref] [PubMed]
  26. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  27. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  28. S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
    [Crossref] [PubMed]
  29. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  30. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36(1), 75–92 (1997).
    [Crossref] [PubMed]
  31. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]

2015 (2)

2014 (1)

B. J. Tromberg, “Diffuse optical methods for assessing breast cancer chemotherapy,” Proc. SPIE 8940, 894018 (2014).
[Crossref]

2011 (1)

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

2008 (3)

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
[Crossref] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

2007 (1)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

2006 (1)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

2005 (3)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt. Lett. 30(23), 3165–3167 (2005).
[Crossref] [PubMed]

2004 (1)

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

2003 (1)

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

2002 (1)

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

2000 (3)

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

1999 (2)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

1997 (2)

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42(9), 1801–1819 (1997).
[Crossref] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36(1), 75–92 (1997).
[Crossref] [PubMed]

1995 (2)

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref] [PubMed]

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (2)

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Alerstam, E.

Anderson, E.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

Andersson-Engels, S.

Baños, A.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

Bargo, P.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Bassi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Berger, A. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

Berns, M. W.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

Bevilacqua, F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

Boas, D. A.

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Cerussi, A.

K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Cerussi, A. E.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref] [PubMed]

Chance, B.

Chen, W. R.

Chen, Y. W.

Chou, P. H.

K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
[Crossref] [PubMed]

Comelli, D.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Coquoz, O.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Cubeddu, R.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

De Blasi, R. A.

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Durkin, A.

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Durkin, A. J.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt. Lett. 30(23), 3165–3167 (2005).
[Crossref] [PubMed]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Fantini, S.

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref] [PubMed]

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

Farina, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Feng, T. C.

Ferrari, M.

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

Fishkin, J. B.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref] [PubMed]

Franceschini, M. A.

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref] [PubMed]

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Grant, A.

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Gratton, E.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref] [PubMed]

Han, T. D.

Haskell, R. C.

Hayakawa, C.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt. Lett. 30(23), 3165–3167 (2005).
[Crossref] [PubMed]

Hering, P.

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

Holcombe, R. F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Hornung, R.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

Hsiang, D.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Hsu, C. K.

Huang, L. L.

Hughes, M.

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

Keefe, K. A.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

Kienle, A.

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42(9), 1801–1819 (1997).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kollias, N.

Kwong, R.

K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
[Crossref] [PubMed]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Lanning, R.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Lee, J. Y.

Liao, Y. K.

Lilge, L.

Lo, W. C.

McAdams, M. S.

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Meister, J.

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

Neidrauer, M.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

No, K. S.

K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
[Crossref] [PubMed]

O’Leary, M. A.

Osterholz, J.

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

Papazoglou, E. S.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

Patterson, M. S.

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42(9), 1801–1819 (1997).
[Crossref] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Pham, T. H.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

Pifferi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Pourrezaei, K.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

Prahl, S. A.

Rose, J.

Schwarzmaier, H. J.

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

So, P. T. C.

Spanier, J.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt. Lett. 30(23), 3165–3167 (2005).
[Crossref] [PubMed]

Spichtig, S.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

Stahel, M.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

Sterenborg, H. J.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Svaasand, L. O.

Tadir, Y.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

Taroni, P.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Terenji, A.

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

Toronov, V.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Tromberg, B. J.

B. J. Tromberg, “Diffuse optical methods for assessing breast cancer chemotherapy,” Proc. SPIE 8940, 894018 (2014).
[Crossref]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt. Lett. 30(23), 3165–3167 (2005).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref] [PubMed]

B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref] [PubMed]

Tsay, T. T.

Tseng, S. H.

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Tyagi, S.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

Tzeng, S. Y.

van Gemert, M. J.

Webb, A.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Weingarten, M. S.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

Welch, A. J.

Willmann, S.

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

Wolf, M.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Wolf, U.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Yang, C. C.

Yodh, A. G.

Zhu, L.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

Zimmermann, R.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

Zubkov, L.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (3)

Dis. Markers (1)

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19(2-3), 95–105 (2004).
[Crossref] [PubMed]

Hum. Reprod. (1)

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[Crossref] [PubMed]

J. Biomed. Opt. (9)

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H. J. Schwarzmaier, “Small-volume frequency-domain oximetry: phantom experiments and first in vivo results,” J. Biomed. Opt. 8(4), 618–628 (2003).
[Crossref] [PubMed]

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, “Changes in optical properties of tissue during acute wound healing in an animal model,” J. Biomed. Opt. 13(4), 044005 (2008).
[Crossref] [PubMed]

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

K. S. No, R. Kwong, P. H. Chou, and A. Cerussi, “Design and testing of a miniature broadband frequency domain photon migration instrument,” J. Biomed. Opt. 13(5), 050509 (2008).
[Crossref] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Lasers Med. Sci. (1)

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[Crossref] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (2)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42(9), 1801–1819 (1997).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

B. J. Tromberg, “Diffuse optical methods for assessing breast cancer chemotherapy,” Proc. SPIE 8940, 894018 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of the configuration of (a) FD DRS and (b) SS DRS sub-systems.
Fig. 2
Fig. 2 (a) Percent deviation of amplitude and (b) phase difference in degree between FD reflectances derived from the SDE and the Monte Carlo model at 1 mm SDS, 100 MHz for various sample optical property combinations.
Fig. 3
Fig. 3 (a) Percent deviation of amplitude and (b) phase difference in degree between FD reflectances derived from the ANNs and the Monte Carlo model at 1 mm SDS, 100 MHz for various sample optical property combinations.
Fig. 4
Fig. 4 Theoretically largest percent recovery errors of (a) μa and (b) μs' induced by measurement uncertainty for various sample optical property combinations. The frequency domain reflectances employed for this analysis were calculated using the Monte Carlo model with SDS of 3 mm and modulation frequency of 100 MHz. Black outlined area indicates typical human skin optical property range in the 600-1000 nm region.
Fig. 5
Fig. 5 Theoretically largest percent recovery errors of (a) μa and (b) μs' induced by measurement uncertainty for various sample optical property combinations. The frequency domain reflectances employed for this analysis were calculated using the Monte Carlo model with SDS of 1 mm and modulation frequency of 100 MHz. Black outlined area indicates typical human skin optical property range in the 600-1000 nm region.
Fig. 6
Fig. 6 Theoretically largest percent recovery errors of (a) μa and (b) μs' induced by measurement uncertainty for various sample optical property combinations. The frequency domain reflectances employed for this analysis were calculated using the Monte Carlo model with SDS of 1 mm and modulation frequency of 400 MHz. Black outlined area indicates typical human skin optical property range in the 600-1000 nm region.
Fig. 7
Fig. 7 FD reflectance data (dots) of phantom-2 measured at 3 mm SDS, 830 nm, and their fit (lines) to the (a) ANNs and (b) SDE.
Fig. 8
Fig. 8 FD reflectance data (dots) of phantom-2 measured at 1 mm SDS, 830 nm, and their fit (lines) to the (a) ANNs and (b) SDE.
Fig. 9
Fig. 9 Broadband optical property spectra (a) μa and (b) μs' of phantom-4 determined using the ANN for the SS DRS apparatus (solid thick lines) and the SDE (solid thin lines) at 1 mm SDS. Squares and circles represent the coefficients obtained from the FD DRS method using ANN and SDE, respectively. Benchmark spectra are depicted as dotted lines.

Tables (5)

Tables Icon

Table 1 The optical properties of four homemade silicone phantoms at 660 and 830 nm.

Tables Icon

Table 2 Average and standard deviation of 50 optical property recovery errors due to measurement uncertainties for various total number of modulation frequencies employed in the least-square fitting algorithm. The sample optical properties were (μa = 0.1 mm−1 and μs' = 1.2 mm−1), SDS was 1 mm, and the modulation frequency range was from 50 to 400 MHz for all cases.

Tables Icon

Table 3 Optical property recovery errors of phantom-2 using the ANNs and the SDE at SDS of 3 mm.

Tables Icon

Table 4 Optical property recovery errors of phantom-2 using the ANNs and the SDE at SDS of 1 mm.

Tables Icon

Table 5 Optical property recovery errors of phantom-4 using the ANNs and the SDE at SDS of 1 mm.

Metrics