Abstract

Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

29 March 2016: A correction was made to Ref. 13.


OSA Recommended Articles
In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion)

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 7(8) 2955-2972 (2016)

Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 8(4) 2245-2260 (2017)

Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers

Gerrit Held, Stefan Preisser, H. Günhan Akarçay, Sara Peeters, Martin Frenz, and Michael Jaeger
Biomed. Opt. Express 5(11) 3765-3780 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and H.-i. Wu, Biomedical Optics (John Wiley & Sons, 2007).
  2. L. V. Wang, Photoacoustic imaging and spectroscopy (Taylor & Francis Group, LLC, 2009).
    [Crossref]
  3. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [Crossref]
  4. P. Beard, “Biomedical photoacoustic imaging: a review,” Interface Focus pp. 602–631 (2011).
    [Crossref]
  5. M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
    [Crossref]
  6. G. Held, S. Preisser, S. Peeters, M. Jaeger, and M. Frenz, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5, 3765–3780 (2014).
    [Crossref] [PubMed]
  7. M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
    [Crossref]
  8. M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
    [Crossref]
  9. T. N. Erpelding, H. Ke, and L. Wang, “In-place clutter reduction for photoacoustic imaging,” (2014).
  10. M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
    [Crossref] [PubMed]
  11. E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging,” in Proceedings of IEEE International Ultrasonics Sympossium (IEEE, 2014), pp. 41–44.
  12. B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
    [Crossref]
  13. M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3, 123–131 (2015).
    [Crossref]
  14. K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899–1908 (2003).
    [Crossref] [PubMed]
  15. N. Baddour, “A multi-dimensional transfer function approach to photo-acoustic signal analysis,” J. Franklin Inst. 345, 792–818 (2008).
    [Crossref]
  16. K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
    [Crossref] [PubMed]
  17. B. Cox and P. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616 (2005).
    [Crossref] [PubMed]
  18. Y. Xu, D. Feng, and L. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
    [Crossref] [PubMed]
  19. A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
    [Crossref] [PubMed]
  20. A. Devaney, Mathematical Foundations of Imaging, Tomography and Wavefield Inversion (Cambridge University Press2012).
    [Crossref]
  21. J.-y. Lu, “Experimental study of high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason. Ferr. 45, 84–97 (1998).
    [Crossref]
  22. M. F. Schiffner and G. Schmitz, eds., “Plane wave pulse echo ultrasound diffraction tomography with a fixed linear transducer array,” in Acoustic Imaging (Springer, 2012).
    [Crossref]
  23. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
    [Crossref]
  24. K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” Opt. Express 22, 26365–26374 (2014).
    [Crossref] [PubMed]

2015 (1)

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3, 123–131 (2015).
[Crossref]

2014 (2)

2013 (2)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref] [PubMed]

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
[Crossref]

2012 (1)

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

2010 (1)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

2009 (1)

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
[Crossref]

2008 (2)

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

N. Baddour, “A multi-dimensional transfer function approach to photo-acoustic signal analysis,” J. Franklin Inst. 345, 792–818 (2008).
[Crossref]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

2005 (1)

B. Cox and P. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (1)

Y. Xu, D. Feng, and L. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
[Crossref] [PubMed]

2001 (1)

K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[Crossref] [PubMed]

1998 (1)

J.-y. Lu, “Experimental study of high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason. Ferr. 45, 84–97 (1998).
[Crossref]

1982 (1)

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
[Crossref] [PubMed]

Alles, E. J.

E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging,” in Proceedings of IEEE International Ultrasonics Sympossium (IEEE, 2014), pp. 41–44.

Baddour, N.

N. Baddour, “A multi-dimensional transfer function approach to photo-acoustic signal analysis,” J. Franklin Inst. 345, 792–818 (2008).
[Crossref]

Bamber, J. C.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref] [PubMed]

E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging,” in Proceedings of IEEE International Ultrasonics Sympossium (IEEE, 2014), pp. 41–44.

Bamer, J.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

Beard, P.

B. Cox and P. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616 (2005).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging: a review,” Interface Focus pp. 602–631 (2011).
[Crossref]

Beard, P. C.

Bebie, H.

K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[Crossref] [PubMed]

Brands, P.

Cox, B.

B. Cox and P. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616 (2005).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

Daoudi, K.

Devaney, A.

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
[Crossref] [PubMed]

A. Devaney, Mathematical Foundations of Imaging, Tomography and Wavefield Inversion (Cambridge University Press2012).
[Crossref]

Dopsa, D.

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
[Crossref]

Erpelding, T. N.

T. N. Erpelding, H. Ke, and L. Wang, “In-place clutter reduction for photoacoustic imaging,” (2014).

Feng, D.

Y. Xu, D. Feng, and L. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
[Crossref] [PubMed]

Frenz, M.

G. Held, S. Preisser, S. Peeters, M. Jaeger, and M. Frenz, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5, 3765–3780 (2014).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
[Crossref]

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[Crossref] [PubMed]

Gertsch, A.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

Harris-Birtill, D.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

Held, G.

Jaeger, M.

G. Held, S. Preisser, S. Peeters, M. Jaeger, and M. Frenz, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5, 3765–3780 (2014).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
[Crossref]

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging,” in Proceedings of IEEE International Ultrasonics Sympossium (IEEE, 2014), pp. 41–44.

Ke, H.

T. N. Erpelding, H. Ke, and L. Wang, “In-place clutter reduction for photoacoustic imaging,” (2014).

Kitz, M.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
[Crossref]

Kohl, A.

Kolios, M. C.

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
[Crossref]

Köstli, K. P.

K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899–1908 (2003).
[Crossref] [PubMed]

K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[Crossref] [PubMed]

Lu, J.-y.

J.-y. Lu, “Experimental study of high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason. Ferr. 45, 84–97 (1998).
[Crossref]

O’Flynn, E.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

Peeters, S.

Pourebrahimi, B.

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
[Crossref]

Preisser, S.

Rabot, O.

Siegenthaler, L.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
[Crossref]

Singh, M. Kuniyil Ajith

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3, 123–131 (2015).
[Crossref]

Steenbergen, W.

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3, 123–131 (2015).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” Opt. Express 22, 26365–26374 (2014).
[Crossref] [PubMed]

Tisserand, S.

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

van den Berg, P.

Wang, L.

Y. Xu, D. Feng, and L. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
[Crossref] [PubMed]

T. N. Erpelding, H. Ke, and L. Wang, “In-place clutter reduction for photoacoustic imaging,” (2014).

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

L. V. Wang and H.-i. Wu, Biomedical Optics (John Wiley & Sons, 2007).

L. V. Wang, Photoacoustic imaging and spectroscopy (Taylor & Francis Group, LLC, 2009).
[Crossref]

Weber, H. P.

K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[Crossref] [PubMed]

Wu, H.-i.

L. V. Wang and H.-i. Wu, Biomedical Optics (John Wiley & Sons, 2007).

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Xu, Y.

Y. Xu, D. Feng, and L. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
[Crossref] [PubMed]

Yoon, S.

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Trans. Med. Imaging (1)

Y. Xu, D. Feng, and L. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferr. (1)

J.-y. Lu, “Experimental study of high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason. Ferr. 45, 84–97 (1998).
[Crossref]

J. Acoust. Soc. Am. (1)

B. Cox and P. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoutic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14054011 (2009).
[Crossref]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamer, “Deformation-compensated averaging for clutter reduction in epiphotoacoutic imaging in vivo,” J. Biomed. Opt. 17066007 (2012).
[Crossref]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

J. Franklin Inst. (1)

N. Baddour, “A multi-dimensional transfer function approach to photo-acoustic signal analysis,” J. Franklin Inst. 345, 792–818 (2008).
[Crossref]

Opt. Express (1)

Photoacoustics (2)

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3, 123–131 (2015).
[Crossref]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).
[Crossref]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Ultrason. Imaging (1)

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
[Crossref] [PubMed]

Other (7)

A. Devaney, Mathematical Foundations of Imaging, Tomography and Wavefield Inversion (Cambridge University Press2012).
[Crossref]

M. F. Schiffner and G. Schmitz, eds., “Plane wave pulse echo ultrasound diffraction tomography with a fixed linear transducer array,” in Acoustic Imaging (Springer, 2012).
[Crossref]

P. Beard, “Biomedical photoacoustic imaging: a review,” Interface Focus pp. 602–631 (2011).
[Crossref]

L. V. Wang and H.-i. Wu, Biomedical Optics (John Wiley & Sons, 2007).

L. V. Wang, Photoacoustic imaging and spectroscopy (Taylor & Francis Group, LLC, 2009).
[Crossref]

T. N. Erpelding, H. Ke, and L. Wang, “In-place clutter reduction for photoacoustic imaging,” (2014).

E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging,” in Proceedings of IEEE International Ultrasonics Sympossium (IEEE, 2014), pp. 41–44.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Geometrical arrangement, object region Ω at z > 0 with acoustical heterogeneities γκ and γρ, as well as initial pressure distribution p0, infinite line sensor at z = 0, plane US waves from ϑ ∈ [0, π].
Fig. 2
Fig. 2 K-space relation between functions in measurement space for scattered photoa-coustic measurements. To get the value of psc at (kt,0, ky,0), the measurement of pus under the plane wave angle ϑ = cos 1 ( k y , 0 k t , 0 ) and the measurement ph are read out on the respective lines, multiplied and summed up; White areas refer to imaginary lateral wave numbers and contain no data.
Fig. 3
Fig. 3 Block diagram of clutter compensation algorithm.
Fig. 4
Fig. 4 Phantom for simulation, weak sources are evaluated in green ROI.
Fig. 5
Fig. 5 Comparison of PA reconstructions of simulated data, axes in mm.
Fig. 6
Fig. 6 Comparison of Reconstructions of experimental data.
Fig. 7
Fig. 7 Comparison of clutter artifacts in uncompensated and compensated image.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p pa ( y , t ) = p h ( y , t ) + p sc ( y , t )
p h ( k y , k t ) = k t 2 c 0 κ z p 0 ( k y , κ z )
p us ( k y , k t , ϑ ) = j k t 2 2 κ z [ γ κ ( k t e φ + k t e ϑ ) + e φ e ϑ γ ρ ( k t e φ + k t e ϑ ) ]
p in ( k y , k z , t ) = p 0 ( k y , k z ) cos ( k c 0 t )
p in ( r , k t ) = k t 4 c 0 π 0 π p 0 ( k t e ϑ ) exp ( i k t e ϑ r ) d ϑ
p ( r , k t ) = k t 2 ( γ κ ( r ) p in ( r , k t ) ) * g ( r ) + ( γ ρ ( r ) p in ( r , k t ) ) * g ( r )
p sc ( k y , z = 0 , k t ) = j k t 3 8 c 0 π κ z 0 π p 0 ( k t e ϑ ) γ κ ( k t ( e φ + e ϑ ) ) d ϑ + j k t 3 8 c 0 π κ z 0 π p 0 ( k t e ϑ ) e φ e ϑ γ ρ ( k t ( e φ + e ϑ ) ) d ϑ
p sc ( k y , k t ) = 1 2 π k t k t p h ( k y , ϑ , k t ) p us ( k y , k t , ϑ ( k y , ϑ ) ) d k y , ϑ
p sc ( k y , k t ) = 1 2 π k t k t p h ( k y , φ , k t ) p us ( k y , φ , k t , cos 1 ( k y k t ) ) d k y , φ
p _ sc = P ̳ us p _ h *
p _ pa = I ̳ p _ h α P ̳ us p _ h *
( p _ pa p _ pa ) = ( [ I ̳ α P ̳ us ] α P ̳ us α P ̳ us [ I ̳ + α P ̳ us ] ) ( p _ h p _ h )

Metrics