Abstract

Angle-resolved low coherence interferometry (a/LCI) is an optical technique used to measure nuclear morphology in situ. However, a/LCI is not an imaging modality and can produce ambiguous results when the measurements are not properly oriented to the tissue architecture. Here we present a 2D a/LCI system which incorporates optical coherence tomography imaging to guide the measurements. System design and characterization are presented, along with example cases which demonstrate the utility of the combined measurements. In addition, future development and applications of this dual modality approach are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determining nuclear morphology using an improved angle-resolved low coherence interferometry system

John W. Pyhtila, Robert N. Graf, and Adam Wax
Opt. Express 11(25) 3473-3484 (2003)

Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium

Derek Ho, Tyler K. Drake, Rex C. Bentley, Fidel A. Valea, and Adam Wax
Biomed. Opt. Express 6(8) 2755-2765 (2015)

A scattering phantom for observing long range order with two-dimensional angle-resolved Low-Coherence Interferometry

Steven K. Yarmoska, Sanghoon Kim, Thomas E. Matthews, and Adam Wax
Biomed. Opt. Express 4(9) 1742-1748 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
    [PubMed]
  2. W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
    [Crossref]
  3. N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
    [Crossref] [PubMed]
  4. N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
    [Crossref] [PubMed]
  5. D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6(8), 2755–2765 (2015).
    [Crossref] [PubMed]
  6. Y. Zhu, M. G. Giacomelli, and A. Wax, “Fiber-optic interferometric two-dimensional scattering-measurement system,” Opt. Lett. 35(10), 1641–1643 (2010).
    [Crossref] [PubMed]
  7. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
    [Crossref] [PubMed]
  8. S. K. Yarmoska, S. Kim, T. E. Matthews, and A. Wax, “A scattering phantom for observing long range order with two-dimensional angle-resolved Low-Coherence Interferometry,” Biomed. Opt. Express 4(9), 1742–1748 (2013).
    [Crossref] [PubMed]
  9. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  10. J. R. Maher, O. Chuchuen, M. H. Henderson, S. Kim, M. T. Rinehart, A. D. Kashuba, A. Wax, and D. F. Katz, “Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue,” Biomed. Opt. Express 6(6), 2022–2035 (2015).
    [Crossref] [PubMed]
  11. T. Wang, A. McElroy, D. Halaney, D. Vela, E. Fung, S. Hossain, J. Phipps, B. Wang, B. Yin, M. D. Feldman, and T. E. Milner, “Dual-modality fiber-based OCT-TPL imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques,” Biomed. Opt. Express 6(5), 1665–1678 (2015).
    [Crossref] [PubMed]
  12. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
    [Crossref] [PubMed]
  13. A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
    [Crossref] [PubMed]
  14. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  15. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  16. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [Crossref] [PubMed]
  17. T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
    [Crossref]
  18. M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
    [Crossref] [PubMed]
  19. J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
    [Crossref] [PubMed]
  20. J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
    [Crossref] [PubMed]
  21. A. Wax and J. W. Pyhtila, “In situ nuclear morphology measurements using light scattering as biomarkers of neoplastic change in animal models of carcinogenesis,” Dis. Markers 25(6), 291–301 (2008).
    [Crossref] [PubMed]
  22. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2000).
  23. M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
    [Crossref]
  24. P. P. Srinivasan, S. J. Heflin, J. A. Izatt, V. Y. Arshavsky, and S. Farsiu, “Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology,” Biomed. Opt. Express 5(2), 348–365 (2014).
    [Crossref] [PubMed]
  25. B. Wang, B. Yin, J. Dwelle, H. G. Rylander, M. K. Markey, and T. E. Milner, “Path-length-multiplexed scattering-angle-diverse optical coherence tomography for retinal imaging,” Opt. Lett. 38(21), 4374–4377 (2013).
    [Crossref] [PubMed]
  26. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
    [Crossref] [PubMed]
  27. J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
    [Crossref] [PubMed]
  28. J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000514 (2013).
    [PubMed]
  29. R. Zhou, T. Kim, L. L. Goddard, and G. Popescu, “Inverse scattering solutions using low-coherence light,” Opt. Lett. 39(15), 4494–4497 (2014).
    [Crossref] [PubMed]

2016 (1)

T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (4)

2011 (4)

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[Crossref] [PubMed]

2010 (3)

Y. Zhu, M. G. Giacomelli, and A. Wax, “Fiber-optic interferometric two-dimensional scattering-measurement system,” Opt. Lett. 35(10), 1641–1643 (2010).
[Crossref] [PubMed]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
[Crossref] [PubMed]

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
[Crossref]

2008 (3)

A. Wax and J. W. Pyhtila, “In situ nuclear morphology measurements using light scattering as biomarkers of neoplastic change in animal models of carcinogenesis,” Dis. Markers 25(6), 291–301 (2008).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

2007 (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

2006 (2)

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

2004 (1)

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

2003 (2)

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

2002 (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

1999 (1)

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Alizadeh-Naderi, R.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

Arshavsky, V. Y.

Backman, V.

J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000514 (2013).
[PubMed]

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
[Crossref] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Badizadegan, K.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Bennett, A.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Bentley, R. C.

Boone, C. W.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Boppart, S. A.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Bright, S.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Brown, W. J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

Calvert, P. D.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Cameron, D. A.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Çapoglu, I. R.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Carretta, E.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Chalut, K. J.

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
[Crossref]

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

Chilkoti, A.

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

Choma, M.

Chuchuen, O.

Clark, A. L.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

D’Amico, T. A.

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

Dasari, R. R.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Dellon, E. S.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Ding, H.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Drake, T. K.

Dwelle, J.

El-Naggar, A. K.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

Farsiu, S.

Feld, M. S.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Feldman, M. D.

Fung, E.

Galanko, J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Gebhart, S. C.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Giacomelli, M.

Giacomelli, M. G.

Y. Zhu, M. G. Giacomelli, and A. Wax, “Fiber-optic interferometric two-dimensional scattering-measurement system,” Opt. Lett. 35(10), 1641–1643 (2010).
[Crossref] [PubMed]

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
[Crossref]

Gillenwater, A.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

Goddard, L. L.

T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
[Crossref]

R. Zhou, T. Kim, L. L. Goddard, and G. Popescu, “Inverse scattering solutions using low-coherence light,” Opt. Lett. 39(15), 4494–4497 (2014).
[Crossref] [PubMed]

Goldblum, J. R.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Gopal, V.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

Guy, C.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

Halaney, D.

Heflin, S. J.

Henderson, M. H.

Ho, D.

Hossain, S.

Hunter, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

Izatt, J.

Izatt, J. A.

Jiao, S.

Kalashnikov, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

Kashuba, A. D.

Katz, D. F.

Kim, S.

Kim, T.

T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
[Crossref]

R. Zhou, T. Kim, L. L. Goddard, and G. Popescu, “Inverse scattering solutions using low-coherence light,” Opt. Lett. 39(15), 4494–4497 (2014).
[Crossref] [PubMed]

Kosaras, B.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Krasnoperova, N. V.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Lee, J.

Lem, J.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Liu, T.

Ma, H.

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

Madanick, R. D.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Maher, J. R.

Makino, C. L.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Mantyh, C. R.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

Markey, M. K.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Matthews, T. E.

McElroy, A.

Migaly, J.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

Milner, T. E.

Müller, M. G.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Nicolò, M.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Nines, R.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

Norris, S. C. P.

Obando, J. V.

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

Ostrander, J. H.

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
[Crossref]

Overholt, B. F.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Panjehpour, M.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Phipps, J.

Popescu, G.

T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
[Crossref]

R. Zhou, T. Kim, L. L. Goddard, and G. Popescu, “Inverse scattering solutions using low-coherence light,” Opt. Lett. 39(15), 4494–4497 (2014).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

Pyhtila, J. W.

A. Wax and J. W. Pyhtila, “In situ nuclear morphology measurements using light scattering as biomarkers of neoplastic change in animal models of carcinogenesis,” Dis. Markers 25(6), 291–301 (2008).
[Crossref] [PubMed]

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

Radosevich, A. J.

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
[Crossref] [PubMed]

J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000514 (2013).
[PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Richards-Kortum, R.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

Rinehart, M. T.

J. R. Maher, O. Chuchuen, M. H. Henderson, S. Kim, M. T. Rinehart, A. D. Kashuba, A. Wax, and D. F. Katz, “Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue,” Biomed. Opt. Express 6(6), 2022–2035 (2015).
[Crossref] [PubMed]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Rogers, J. D.

J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000514 (2013).
[PubMed]

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
[Crossref] [PubMed]

Rylander, H. G.

Sarunic, M.

Shaheen, N. J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Sidman, R. L.

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Simnick, A. J.

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

Sporn, T. A.

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

Srinivasan, P. P.

Steele, V. E.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

Stoner, G. D.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

Taflove, A.

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Terry, N.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

Terry, N. G.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

Thacker, J. K.

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Trembath, D.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Valea, F. A.

Vela, D.

Wang, B.

Wang, J.

Wang, T.

Wang, Z.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Wax, A.

D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6(8), 2755–2765 (2015).
[Crossref] [PubMed]

J. R. Maher, O. Chuchuen, M. H. Henderson, S. Kim, M. T. Rinehart, A. D. Kashuba, A. Wax, and D. F. Katz, “Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue,” Biomed. Opt. Express 6(6), 2022–2035 (2015).
[Crossref] [PubMed]

S. K. Yarmoska, S. Kim, T. E. Matthews, and A. Wax, “A scattering phantom for observing long range order with two-dimensional angle-resolved Low-Coherence Interferometry,” Biomed. Opt. Express 4(9), 1742–1748 (2013).
[Crossref] [PubMed]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
[Crossref] [PubMed]

Y. Zhu, M. G. Giacomelli, and A. Wax, “Fiber-optic interferometric two-dimensional scattering-measurement system,” Opt. Lett. 35(10), 1641–1643 (2010).
[Crossref] [PubMed]

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
[Crossref]

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

A. Wax and J. W. Pyhtila, “In situ nuclear morphology measurements using light scattering as biomarkers of neoplastic change in animal models of carcinogenesis,” Dis. Markers 25(6), 291–301 (2008).
[Crossref] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Wei, Q.

Woosley, J. T.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yang, C.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Yarmoska, S. K.

Yi, J.

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
[Crossref] [PubMed]

J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000514 (2013).
[PubMed]

Yin, B.

Zhang, H. F.

Zhou, R.

Zhou, R. J.

T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
[Crossref]

Zhu, Y.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
[Crossref] [PubMed]

Y. Zhu, M. G. Giacomelli, and A. Wax, “Fiber-optic interferometric two-dimensional scattering-measurement system,” Opt. Lett. 35(10), 1641–1643 (2010).
[Crossref] [PubMed]

Ziefle, C. G.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[Crossref] [PubMed]

S. K. Yarmoska, S. Kim, T. E. Matthews, and A. Wax, “A scattering phantom for observing long range order with two-dimensional angle-resolved Low-Coherence Interferometry,” Biomed. Opt. Express 4(9), 1742–1748 (2013).
[Crossref] [PubMed]

P. P. Srinivasan, S. J. Heflin, J. A. Izatt, V. Y. Arshavsky, and S. Farsiu, “Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology,” Biomed. Opt. Express 5(2), 348–365 (2014).
[Crossref] [PubMed]

T. Wang, A. McElroy, D. Halaney, D. Vela, E. Fung, S. Hossain, J. Phipps, B. Wang, B. Yin, M. D. Feldman, and T. E. Milner, “Dual-modality fiber-based OCT-TPL imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques,” Biomed. Opt. Express 6(5), 1665–1678 (2015).
[Crossref] [PubMed]

J. R. Maher, O. Chuchuen, M. H. Henderson, S. Kim, M. T. Rinehart, A. D. Kashuba, A. Wax, and D. F. Katz, “Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue,” Biomed. Opt. Express 6(6), 2022–2035 (2015).
[Crossref] [PubMed]

D. Ho, T. K. Drake, R. C. Bentley, F. A. Valea, and A. Wax, “Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium,” Biomed. Opt. Express 6(8), 2755–2765 (2015).
[Crossref] [PubMed]

Biophys. J. (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Cancer Res. (1)

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63(13), 3556–3559 (2003).
[PubMed]

Dis. Markers (1)

A. Wax and J. W. Pyhtila, “In situ nuclear morphology measurements using light scattering as biomarkers of neoplastic change in animal models of carcinogenesis,” Dis. Markers 25(6), 291–301 (2008).
[Crossref] [PubMed]

Gastroenterology (1)

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140(1), 42–50 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D’Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14(1), 88–97 (2008).
[Crossref]

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Review of the Application of T-Matrix Calculations for Determining the Structure of Cell Nuclei With Angle-Resolved Light Scattering Measurements,” IEEE J. Sel. Top. Quantum Electron. 16(4), 900–908 (2010).
[Crossref]

J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000514 (2013).
[PubMed]

J. Biomed. Opt. (3)

N. Terry, Y. Zhu, J. K. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt. 16(10), 106002 (2011).
[Crossref] [PubMed]

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004).
[Crossref] [PubMed]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016).
[Crossref]

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolò, C. L. Makino, and R. L. Sidman, “Morphological, physiological, and biochemical changes in rhodopsin knockout mice,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 736–741 (1999).
[Crossref] [PubMed]

Other (1)

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

2D a/LCI system combined with OCT scanner. (a) System configuration, and (b) close up of the system geometry near the sample plane showing sequential imaging with 2D a/LCI and OCT. For mouse retinal imaging, a custom designed objective was inserted in front of L2 to create a 4f configuration with the crystalline lens of the eye. The front surface of the intact mouse eyeball is placed in contact with the objective, and the back surface is held by the sample chamber which matches its curvature as shown by the dotted line. (c) Comparison of 1D and 2D a/LCI measurement ranges superimposed on a simulated scattering pattern of a 10 μm polystyrene bead and (d) OCT en face image of a 1mm diameter pinhole used to co-register fields of view for two modalities (scale bar = 1mm).

Fig. 2
Fig. 2

Images of calibration phantom constructed via soft lithography in PDMS. The scatterers have a nominal 12 μm diameter with a 24 μm center to center spacing. (a) Bright field microscopy image, (b) OCT en face image (x-y) with a cross section (x-z) in the inset, (scale bar = 100 μm, inset scale bar = 30 μm), (c) 2D a/LCI measurement (angular plane), (d) Fourier transform of 2D a/LCI measurement (correlation plane), and (e) azimuthal summation of (d).

Fig. 3
Fig. 3

OCT imaging of retinas for (a) wild type, and (b) Rhodopsin knockout mice. The location of the ONH is indicated with the white arrow, and serves as the reference point to designate the locations of the ROIs imaged. The scale bar indicates 100 μm.

Fig. 4
Fig. 4

OCT and a/LCI scans of EGDA rat esophagus tissue. (a,d) OCT image with the (b,e) corresponding scattering intensity collected via 2D a/LCI presented as depth vs polar angle θ2 and (c,f) the corresponding normalized a/LCI intensity depth profile (A-scan) for a well prepared sample (top) and a poorly prepared sample (bottom). (Scale bars in (a) and (d) = 100μm). Depth measurements in (b), (c), (e) and (f) are in optical path length.

Fig. 5
Fig. 5

Normalized a/LCI correlation energy vs depth for EGDA rat epithelial tissues for (a) 0 to 200 μm correlation length (b) 10 to 13 μm correlation length and (c) 19 to 22 μm correlation length. Depth measurements are in optical path length and arrows mark ROI.

Fig. 6
Fig. 6

(a) Scattered intensity collected via 2D a/LCI corresponding to the ROI layer in Fig. 5. (b) Corresponding 2D correlation energy obtained by Fourier transforming (a). (c) Radial correlation energy vs. correlation length obtained by azimuthal integration of (b), and (d) Mie fit result at the same plane. The size of the scatterers at the ROI was determined to be 9.7 μm in diameter, with index of the refraction of nuclei to be 1.43 and that of surrounding to be 1.37.

Fig. 7
Fig. 7

(a) Normalized a/LCI intensity for the 0.225% 260 nm polystyrene beads solution, the esophageal tissue, and white paper, and (b) radial correlation energy vs correlation length by azimuthal integration of 2D a/LCI correlation plane at the same depth for each sample in log-log scale. The blue box indicates the region where data were analyzed using the power-law fitting. (c) Amplitude of fitted power law exponent across entire imaging depth for each sample. Depths in (a) and (c) are in optical path length.

Fig. 8
Fig. 8

(a) OCT scan of wild type mouse retina (scale bar = 100μm). (b) Scattering intensity collected via 2D a/LCI as function of depth vs polar angle θ2. Arrows indicate corresponding layers.

Fig. 9
Fig. 9

(a) Scattering plane from the same sample at the depth corresponding to outer segment retinal pigmented epithelium layer (OS/RPE), and (b) correlation plane of the OS/RPE.

Fig. 10
Fig. 10

(a) Normalized radial correlation energy vs. correlation length obtained by azimuthal integration of correlation of OS/RPE layer shown in Fig. 9(b), (b) Normalized radial correlation energy vs. correlation length for NFL, OPL, and OS/RPE in log-log scale. (c) Fitted power law exponent across 20-90μm correlation length range for NFL, OPL and OS/RPE layers for each type of mouse. The error bar indicates standard error of the mean.

Metrics