Abstract

Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship pn with the pixel-size p of the detector and the number of raster-scanning steps n.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient assessment method of on-board modulation transfer function of optical remote sensing sensors

Jin Li, Fei Xing, Ting Sun, and Zheng You
Opt. Express 23(5) 6187-6208 (2015)

Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution

Waheb Bishara, Ting-Wei Su, Ahmet F. Coskun, and Aydogan Ozcan
Opt. Express 18(11) 11181-11191 (2010)

X-ray modulation transfer functions of photostimulable phosphor image plates and scanners

John F. Seely, Glenn E. Holland, Lawrence T. Hudson, and Albert Henins
Appl. Opt. 47(31) 5753-5761 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. Delpierre, “A history of hybrid pixel detectors, from high energy physics to medical imaging,” J. Instrum. 9(5), C05059 (2014).
    [Crossref]
  2. T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2, 371–383 (2015).
    [Crossref] [PubMed]
  3. P. Horowitz and J. Howell, “A scanning x-ray microscope using synchrotron radiation,” Science 178(61), 608–611 (1972).
    [Crossref] [PubMed]
  4. G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
    [Crossref] [PubMed]
  5. A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nature Photon. 4(12), 840–848 (2010).
    [Crossref]
  6. H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
    [Crossref]
  7. C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
    [Crossref]
  8. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
    [Crossref]
  9. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
    [Crossref] [PubMed]
  10. B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
    [Crossref] [PubMed]
  11. A. Sasov and D. Van Dyck, “Desktop X-ray microscopy and microtomography,” J. Microsc. 191(2), 151–158 (1998).
    [Crossref] [PubMed]
  12. T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
    [Crossref] [PubMed]
  13. T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
    [Crossref] [PubMed]
  14. J. Sibarita, “Deconvolution microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 201–243 (2005).
    [PubMed]
  15. W. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
    [Crossref]
  16. L. Lucy, “An iterative technique for rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
    [Crossref]
  17. E. Samei, M. Flynn, and D. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
    [Crossref] [PubMed]
  18. R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
    [Crossref]
  19. D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).
  20. C. Bodensteiner, C. Darolti, and A. Schweikard, “Achieving super-resolution X-ray imaging with mobile C-arm devices,” Int. J. Med. Robot. Comp. 5, 243–256 (2009).
    [Crossref]
  21. J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
    [Crossref]
  22. E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
    [Crossref]
  23. M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
    [Crossref] [PubMed]
  24. W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
    [Crossref] [PubMed]
  25. S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
    [Crossref] [PubMed]

2015 (2)

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2, 371–383 (2015).
[Crossref] [PubMed]

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

2014 (2)

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

P. Delpierre, “A history of hybrid pixel detectors, from high energy physics to medical imaging,” J. Instrum. 9(5), C05059 (2014).
[Crossref]

2013 (2)

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

2011 (1)

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

2010 (3)

S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
[Crossref] [PubMed]

M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nature Photon. 4(12), 840–848 (2010).
[Crossref]

2009 (1)

C. Bodensteiner, C. Darolti, and A. Schweikard, “Achieving super-resolution X-ray imaging with mobile C-arm devices,” Int. J. Med. Robot. Comp. 5, 243–256 (2009).
[Crossref]

2008 (2)

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

2007 (1)

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

2005 (3)

J. Sibarita, “Deconvolution microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 201–243 (2005).
[PubMed]

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

1999 (1)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

1998 (2)

A. Sasov and D. Van Dyck, “Desktop X-ray microscopy and microtomography,” J. Microsc. 191(2), 151–158 (1998).
[Crossref] [PubMed]

E. Samei, M. Flynn, and D. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

1987 (1)

B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
[Crossref] [PubMed]

1980 (1)

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
[Crossref] [PubMed]

1974 (1)

L. Lucy, “An iterative technique for rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

1972 (2)

W. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
[Crossref]

P. Horowitz and J. Howell, “A scanning x-ray microscope using synchrotron radiation,” Science 178(61), 608–611 (1972).
[Crossref] [PubMed]

Abdalla, S.

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

Alozy, J.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Attwood, D.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nature Photon. 4(12), 840–848 (2010).
[Crossref]

Ballabriga, R.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Batenburg, K.

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

Baumbach, T.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Blaj, G.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Bodensteiner, C.

C. Bodensteiner, C. Darolti, and A. Schweikard, “Achieving super-resolution X-ray imaging with mobile C-arm devices,” Int. J. Med. Robot. Comp. 5, 243–256 (2009).
[Crossref]

Boye, P.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Bruder, H.

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

Bunk, O.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Burghammer, M.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Campbell, M.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Cecilia, A.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Charalambous, P.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Christ, O.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
[Crossref] [PubMed]

Conley, R.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

D’Amico, K.

B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
[Crossref] [PubMed]

Darolti, C.

C. Bodensteiner, C. Darolti, and A. Schweikard, “Achieving super-resolution X-ray imaging with mobile C-arm devices,” Int. J. Med. Robot. Comp. 5, 243–256 (2009).
[Crossref]

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Deckman, H.

B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
[Crossref] [PubMed]

Delpierre, P.

P. Delpierre, “A history of hybrid pixel detectors, from high energy physics to medical imaging,” J. Instrum. 9(5), C05059 (2014).
[Crossref]

Dierolf, M.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Epple, M.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Farsiu, S.

M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

Fauler, A.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Feldkamp, J.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Fiederle, M.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Flannery, B.

B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
[Crossref] [PubMed]

Flohr, T.

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

Flynn, M.

E. Samei, M. Flynn, and D. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Fritzsch, T.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Frojdh, E.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Graafsma, H.

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2, 371–383 (2015).
[Crossref] [PubMed]

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Hamann, E.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Hatsui, T.

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2, 371–383 (2015).
[Crossref] [PubMed]

Heijne, E.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Hirsemann, H.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Hoffmann, K.

S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
[Crossref] [PubMed]

Holt, M.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Horowitz, P.

P. Horowitz and J. Howell, “A scanning x-ray microscope using synchrotron radiation,” Science 178(61), 608–611 (1972).
[Crossref] [PubMed]

Howell, J.

P. Horowitz and J. Howell, “A scanning x-ray microscope using synchrotron radiation,” Science 178(61), 608–611 (1972).
[Crossref] [PubMed]

Kang, H.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Kirz, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Koenig, T.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Küchler, M.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Kurapova, O.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Lampert, M.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Lange, S.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Lengeler, B.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Liu, C.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Llopart, X.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Lo, J.

M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

Lucy, L.

L. Lucy, “An iterative technique for rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

Macrander, A.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Maser, J.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

McCollough, C.

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

Menzel, A.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Miao, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Niemann, B.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
[Crossref] [PubMed]

Noël, P.

S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
[Crossref] [PubMed]

Norlin, B.

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

O’Nils, M.

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

Oelmann, B.

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

Patommel, J.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Pennicard, D.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Pfeiffer, F.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Pichotka, M.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Primak, A.

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

Procz, S.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Reimann, D.

E. Samei, M. Flynn, and D. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Richardson, W.

Riekel, C.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Roberge, W.

B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
[Crossref] [PubMed]

Robinson, M.

M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

Rothermund, M.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Rudolph, D.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
[Crossref] [PubMed]

Sakdinawat, A.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nature Photon. 4(12), 840–848 (2010).
[Crossref]

Samei, E.

E. Samei, M. Flynn, and D. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Sasov, A.

A. Sasov and D. Van Dyck, “Desktop X-ray microscopy and microtomography,” J. Microsc. 191(2), 151–158 (1998).
[Crossref] [PubMed]

Sayre, D.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Schafer, S.

S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
[Crossref] [PubMed]

Schmahl, G.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
[Crossref] [PubMed]

Schmidt, B.

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

Schroer, C.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Schweikard, A.

C. Bodensteiner, C. Darolti, and A. Schweikard, “Achieving super-resolution X-ray imaging with mobile C-arm devices,” Int. J. Med. Robot. Comp. 5, 243–256 (2009).
[Crossref]

Sibarita, J.

J. Sibarita, “Deconvolution microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 201–243 (2005).
[PubMed]

Sijbers, J.

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

Smoljanin, S.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Stephenson, G.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Stierstorfer, K.

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

Süß, C.

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

Thibault, P.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Thim, J.

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

Tlustos, L.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Tolbanov, O.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Toth, C.

M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

Tyazhev, A.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Ulzheimer, S.

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

van Aarle, W.

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

van de Casteele, E.

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

van der Hart, A.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Van Dyck, D.

A. Sasov and D. Van Dyck, “Desktop X-ray microscopy and microtomography,” J. Microsc. 191(2), 151–158 (1998).
[Crossref] [PubMed]

van Gompel, G.

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

Vincze, L.

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Vogt, S.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Walczak, A.

S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
[Crossref] [PubMed]

Winarski, R.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Wong, W.

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

Yan, H.

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

Zuber, M.

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Zuvic, M.

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Adv. Biochem. Eng. Biotechnol. (1)

J. Sibarita, “Deconvolution microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 201–243 (2005).
[PubMed]

Appl. Phys. Lett. (2)

H. Kang, H. Yan, R. Winarski, M. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. Macrander, and G. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).
[Crossref]

C. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Astron. J. (1)

L. Lucy, “An iterative technique for rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

IEEE Trans. Image Process. (2)

M. Robinson, C. Toth, J. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

W. van Aarle, K. Batenburg, G. van Gompel, E. van de Casteele, and J. Sijbers, “Super-resolution for computed tomography based on discrete tomography,” IEEE Trans. Image Process. 23(3), 1181–1193 (2014).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, and M. Fiederle, “Performance of a MEDIPIX3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor,” IEEE Trans. Med. Imaging 34(3), 707–715 (2015).
[Crossref]

Int. J. Med. Robot. Comp. (1)

C. Bodensteiner, C. Darolti, and A. Schweikard, “Achieving super-resolution X-ray imaging with mobile C-arm devices,” Int. J. Med. Robot. Comp. 5, 243–256 (2009).
[Crossref]

IUCrJ (1)

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2, 371–383 (2015).
[Crossref] [PubMed]

J. Instrum. (2)

P. Delpierre, “A history of hybrid pixel detectors, from high energy physics to medical imaging,” J. Instrum. 9(5), C05059 (2014).
[Crossref]

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” J. Instrum. 8(2), C02016 (2013).
[Crossref]

J. Microsc. (1)

A. Sasov and D. Van Dyck, “Desktop X-ray microscopy and microtomography,” J. Microsc. 191(2), 151–158 (1998).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

JPCS (1)

D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M. Lampert, T. Fritzsch, and M. Rothermund, “The LAMBDA photon-counting pixel detector,” JPCS 425(6), 062010 (2013).

Med. Phys. (4)

E. Samei, M. Flynn, and D. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

T. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. Primak, and C. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32(8), 2536–2547 (2005).
[Crossref] [PubMed]

T. Flohr, K. Stierstorfer, C. Süß, B. Schmidt, A. Primak, and C. McCollough, “Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT,” Med. Phys. 34(5), 1712–1723 (2007).
[Crossref] [PubMed]

S. Schafer, P. Noël, A. Walczak, and K. Hoffmann, “Filtered region of interest cone-beam rotational angiography,” Med. Phys. 37(2), 694–703 (2010).
[Crossref] [PubMed]

Nature (1)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Nature Photon. (1)

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nature Photon. 4(12), 840–848 (2010).
[Crossref]

Nucl. Instr. Meth. Phys. Res. A (1)

J. Thim, B. Norlin, M. O’Nils, S. Abdalla, and B. Oelmann, “Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images,” Nucl. Instr. Meth. Phys. Res. A 633, S247–S249 (2011).
[Crossref]

Q. Rev. Biophys. (1)

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Q. Rev. Biophys. 13(3), 297–315 (1980).
[Crossref] [PubMed]

Science (3)

P. Horowitz and J. Howell, “A scanning x-ray microscope using synchrotron radiation,” Science 178(61), 608–611 (1972).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

B. Flannery, H. Deckman, W. Roberge, and K. D’Amico, “Three-dimensional X-ray microtomography,” Science 237, 1439–1444 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of the XDM method. (a) The sample is raster-scanned in front of the detector with n sub-pixel sized steps. (b) – (d) During the stepping process, the object intensity profile (solid black curve) is sampled at various positions and integrated over one pixel size p. The vertical bars represent the intensity that is recorded in each detector pixel. After sorting of the recorded raster-stepping images an image is obtained with pixel size of p/n that can be described by spatially oversampling the sample structures with respect to the detector pixels. A Richardson-Lucy deconvolution step is performed to restore the latent XDM image (e).

Fig. 2
Fig. 2

Experimentally determined LSF along the pixel columns of the MEDIPIX3RX-based LAMBDA detector in charge summing mode, assembled with a 300 μm thick Si sensor at 100 V bias (solid line). The LSF was obtained using the slanted-edge method. As a reference, a theoretical box-like LSF with a width of one pixel is illustrated (dashed line).

Fig. 3
Fig. 3

Resolution and noise obtained with XDM at different scanning parameters n. (a) Shows the measured MTF for different values of n. For larger n an increase in contrast is observed indicating higher resolution. (b) Shows the resolution limit obtained at 5% MTF (left axis) and the amount of noise relative to the background intensity (right axis), depending on n. The minimum feature size decreases hyperbolically with n, whereas the noise does not depend on the XDM parameter.

Fig. 4
Fig. 4

Results of the super-resolution imaging of the Siemens-star phantom. Besides a photograph of the used phantom (a), the region around the center of the star is shown in a standard radiography image (n = 1) as reference (b), a raster-scanned image (n = 3) without deconvolution (c) and with the XDM method (d). In (e), a comparison between the obtained amplitudes of the marked line patterns from (b) – (d) is shown. One feature of the XDM images is the superior contrast. In the standard image, structure aliasing is clearly visible, as the amplitude drops to zero.

Fig. 5
Fig. 5

CT images of a chicken bone sample taken with 40kVp. (a) Standard image (n = 1), (b) raster-scanned image (n = 5), (c) XDM image. All three images are shown in a window from -400 to 6000 HU. (d) displays the pixel values along the marked lines in (a)–(c). Despite a much lower photon statistics per pixel, the XDM image shows superior feature resolution and contrast. The pixel coordinates of the lines are given in the XDM image units.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I Mx + m , Ny + n SR = I x , y D ( T ( m p M , n p N ) O ( ξ , υ ) ) , m = 1 M , n = 1 N ,
L S F ( x ) { 1 if | x | p / 2 0 otherwise ,
L S F X D M ( x ) { 1 if | x | n p XDM / 2 0 otherwise .
Δ = s d o = ( M 1 ) s ,
R lim = p / n ,

Metrics