Abstract

Complementary laser scanning microscopy micrographs are considered as pairs consisting in a master image (MI) and a slave image (SI), the latter with potential for facilitating the interpretation of the MI. We propose a strategy based on reversible watermarking for embedding a lossy compressed version of the SI into the MI. The use of reversible watermarking ensures the exact recovery of the host image. By storing and/or transmitting the watermarked MI in a single file, the information contained in both images that constitute the pair is made available to a potential end-user, which simplifies data association and transfer. Examples are presented using support images collected by two complementary techniques, confocal scanning laser microscopy and transmission laser scanning microscopy, on Hematoxylin and Eosin stained tissue fragments. A strategy for minimizing the watermarking distortions of the MI, while preserving the content of the SI, is discussed in detail.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy

Stefan G. Stanciu, Denis E. Tranca, Radu Hristu, and George A. Stanciu
Biomed. Opt. Express 8(12) 5374-5383 (2017)

Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain

L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone
Opt. Express 20(18) 20582-20598 (2012)

Gray tone image watermarking with complementary computer generated holography

Christophe Martinez, Fabien Laulagnet, and Olivier Lemonnier
Opt. Express 21(13) 15438-15451 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Inoue, “Foundations of confocal scanned imaging in light microscopy,” Handbook of Biological Confocal Microscopy (Springer, 2006) pp. 1–17.
  2. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
    [Crossref] [PubMed]
  3. C. Smith, “Microscopy: Two microscopes are better than one,” Nature 492(7428), 293–297 (2012).
    [Crossref] [PubMed]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  5. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [Crossref] [PubMed]
  6. I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
    [Crossref]
  7. I. Cox, M. Miller, J. Bloom, J. Fridrich and T. Kalker, Digital Watermarking and Steganography (Morgan Kaufmann, 2007).
  8. M. Goljan, J. Fridrich, and R. Du, “Distortion-free data embedding for images,” Information Hiding 2137, 27–41 (2001).
    [Crossref]
  9. H. F. Carvalho and S. R. Taboga, “Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections,” Histochem. Cell Biol. 106(6), 587–592 (1996).
    [Crossref] [PubMed]
  10. A. De Rossi, L. B. Rocha, and M. A. Rossi, “Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures,” J. Oral Pathol. Med. 36(6), 377–381 (2007).
    [Crossref] [PubMed]
  11. J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
    [Crossref] [PubMed]
  12. A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
    [Crossref] [PubMed]
  13. C. Bettinger and H. W. Zimmermann, “New investigations on hematoxylin, hematein, and hematein-aluminium complexes. II. Hematein-aluminium complexes and hemalum staining,” Histochemistry 96(3), 215–228 (1991).
    [Crossref] [PubMed]
  14. M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
    [Crossref] [PubMed]
  15. X. Li, B. Yang, and T. Zeng, “Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection,” IEEE Trans. Image Process. 20(12), 3524–3533 (2011).
    [Crossref] [PubMed]
  16. G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
    [Crossref]
  17. X. Gui, X. Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Process. 98, 370–380 (2014).
    [Crossref]
  18. I.-C. Dragoi and D. Coltuc, “Improved Rhombus Interpolation for Reversible Watermarking by Difference Expansion,” In Proceedings of the 20th European Signal Processing Conference (EUSIPCO2012), 1688–1692 (2012).
  19. X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
    [Crossref] [PubMed]
  20. W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
    [Crossref] [PubMed]
  21. I.-C. Dragoi and D. Coltuc, “Local-prediction-based difference expansion reversible watermarking,” IEEE Trans. Image Process. 23(4), 1779–1790 (2014).
    [Crossref] [PubMed]
  22. I.-C. Dragoi and D. Coltuc, “On local prediction based reversible watermarking,” IEEE Trans. Image Process. 24(4), 1244–1246 (2015).
    [Crossref] [PubMed]
  23. D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Trans. Image Process. 16(3), 721–730 (2007).
    [Crossref] [PubMed]
  24. V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
    [Crossref]
  25. I.-C. Dragoi, S.G. Stanciu, R. Hristu, H.-G. Coanda, D.E. Tranca, M. Popescu and D. Coltuc, “Supportive code for [Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking, Biomedical Optics Express (2016)]” figshare (2016) [retrieved 6 February 2016] https://dx.doi.org/10.6084/m9.figshare.2073064.v1 .

2015 (2)

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

I.-C. Dragoi and D. Coltuc, “On local prediction based reversible watermarking,” IEEE Trans. Image Process. 24(4), 1244–1246 (2015).
[Crossref] [PubMed]

2014 (2)

X. Gui, X. Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Process. 98, 370–380 (2014).
[Crossref]

I.-C. Dragoi and D. Coltuc, “Local-prediction-based difference expansion reversible watermarking,” IEEE Trans. Image Process. 23(4), 1779–1790 (2014).
[Crossref] [PubMed]

2013 (3)

X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
[Crossref] [PubMed]

W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
[Crossref] [PubMed]

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

2012 (1)

C. Smith, “Microscopy: Two microscopes are better than one,” Nature 492(7428), 293–297 (2012).
[Crossref] [PubMed]

2011 (1)

X. Li, B. Yang, and T. Zeng, “Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection,” IEEE Trans. Image Process. 20(12), 3524–3533 (2011).
[Crossref] [PubMed]

2010 (1)

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

2009 (1)

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

2007 (2)

A. De Rossi, L. B. Rocha, and M. A. Rossi, “Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures,” J. Oral Pathol. Med. 36(6), 377–381 (2007).
[Crossref] [PubMed]

D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Trans. Image Process. 16(3), 721–730 (2007).
[Crossref] [PubMed]

2005 (1)

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref] [PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

2002 (1)

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

2001 (1)

M. Goljan, J. Fridrich, and R. Du, “Distortion-free data embedding for images,” Information Hiding 2137, 27–41 (2001).
[Crossref]

1996 (1)

H. F. Carvalho and S. R. Taboga, “Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections,” Histochem. Cell Biol. 106(6), 587–592 (1996).
[Crossref] [PubMed]

1991 (1)

C. Bettinger and H. W. Zimmermann, “New investigations on hematoxylin, hematein, and hematein-aluminium complexes. II. Hematein-aluminium complexes and hemalum staining,” Histochemistry 96(3), 215–228 (1991).
[Crossref] [PubMed]

Alami, J.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Babál, P.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Bakueva, L.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Balázová, K.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Banerjee, P.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Barzda, V.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Bettinger, C.

C. Bettinger and H. W. Zimmermann, “New investigations on hematoxylin, hematein, and hematein-aluminium complexes. II. Hematein-aluminium complexes and hemalum staining,” Histochemistry 96(3), 215–228 (1991).
[Crossref] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Carvalho, H. F.

H. F. Carvalho and S. R. Taboga, “Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections,” Histochem. Cell Biol. 106(6), 587–592 (1996).
[Crossref] [PubMed]

Castellanos, M. R.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Cerná, M.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Chirico, G.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref] [PubMed]

Cisek, R.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Coatrieux, G.

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

Collini, M.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref] [PubMed]

Coltuc, D.

I.-C. Dragoi and D. Coltuc, “On local prediction based reversible watermarking,” IEEE Trans. Image Process. 24(4), 1244–1246 (2015).
[Crossref] [PubMed]

I.-C. Dragoi and D. Coltuc, “Local-prediction-based difference expansion reversible watermarking,” IEEE Trans. Image Process. 23(4), 1779–1790 (2014).
[Crossref] [PubMed]

I.-C. Dragoi and D. Coltuc, “Improved Rhombus Interpolation for Reversible Watermarking by Difference Expansion,” In Proceedings of the 20th European Signal Processing Conference (EUSIPCO2012), 1688–1692 (2012).

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

Cuppens, F.

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

Cuppens-Boulahia, N.

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

Davidov, A.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

De Rossi, A.

A. De Rossi, L. B. Rocha, and M. A. Rossi, “Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures,” J. Oral Pathol. Med. 36(6), 377–381 (2007).
[Crossref] [PubMed]

Debata, P. R.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Diaspro, A.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref] [PubMed]

Dragoi, I.-C.

I.-C. Dragoi and D. Coltuc, “On local prediction based reversible watermarking,” IEEE Trans. Image Process. 24(4), 1244–1246 (2015).
[Crossref] [PubMed]

I.-C. Dragoi and D. Coltuc, “Local-prediction-based difference expansion reversible watermarking,” IEEE Trans. Image Process. 23(4), 1779–1790 (2014).
[Crossref] [PubMed]

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

I.-C. Dragoi and D. Coltuc, “Improved Rhombus Interpolation for Reversible Watermarking by Difference Expansion,” In Proceedings of the 20th European Signal Processing Conference (EUSIPCO2012), 1688–1692 (2012).

Du, R.

M. Goljan, J. Fridrich, and R. Du, “Distortion-free data embedding for images,” Information Hiding 2137, 27–41 (2001).
[Crossref]

Dumont, D. J.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Fata, J. E.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Fridrich, J.

M. Goljan, J. Fridrich, and R. Du, “Distortion-free data embedding for images,” Information Hiding 2137, 27–41 (2001).
[Crossref]

Goljan, M.

M. Goljan, J. Fridrich, and R. Du, “Distortion-free data embedding for images,” Information Hiding 2137, 27–41 (2001).
[Crossref]

Gomez, J. P.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Gui, X.

X. Gui, X. Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Process. 98, 370–380 (2014).
[Crossref]

Guller, L.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Gundry, S.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Hristu, R.

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

Hu, X.

W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
[Crossref] [PubMed]

Jakubovská, V.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Jakubovský, J.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Kim, H. J.

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

Li, B.

X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
[Crossref] [PubMed]

Li, X.

X. Gui, X. Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Process. 98, 370–380 (2014).
[Crossref]

W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
[Crossref] [PubMed]

X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
[Crossref] [PubMed]

X. Li, B. Yang, and T. Zeng, “Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection,” IEEE Trans. Image Process. 20(12), 3524–3533 (2011).
[Crossref] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Maiman, M.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Nam, J.

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

Pan, W.

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

Pirog, E. C.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Polák, S.

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Prent, N.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Rajupet, S.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Rocha, L. B.

A. De Rossi, L. B. Rocha, and M. A. Rossi, “Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures,” J. Oral Pathol. Med. 36(6), 377–381 (2007).
[Crossref] [PubMed]

Rodríguez, J. J.

D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Trans. Image Process. 16(3), 721–730 (2007).
[Crossref] [PubMed]

Rossi, M. A.

A. De Rossi, L. B. Rocha, and M. A. Rossi, “Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures,” J. Oral Pathol. Med. 36(6), 377–381 (2007).
[Crossref] [PubMed]

Roux, C.

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

Rowlands, J.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Sachnev, V.

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

Shi, Y. Q.

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

Smith, C.

C. Smith, “Microscopy: Two microscopes are better than one,” Nature 492(7428), 293–297 (2012).
[Crossref] [PubMed]

Stanciu, G. A.

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

Stanciu, S. G.

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

Suresh, S.

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

Szerszen, A.

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Taboga, S. R.

H. F. Carvalho and S. R. Taboga, “Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections,” Histochem. Cell Biol. 106(6), 587–592 (1996).
[Crossref] [PubMed]

Thodi, D. M.

D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Trans. Image Process. 16(3), 721–730 (2007).
[Crossref] [PubMed]

Tokarz, D.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Tranca, D. E.

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

Tuer, A.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Yang, B.

X. Gui, X. Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Process. 98, 370–380 (2014).
[Crossref]

X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
[Crossref] [PubMed]

X. Li, B. Yang, and T. Zeng, “Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection,” IEEE Trans. Image Process. 20(12), 3524–3533 (2011).
[Crossref] [PubMed]

Yu, N.

W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
[Crossref] [PubMed]

Zeng, T.

X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
[Crossref] [PubMed]

X. Li, B. Yang, and T. Zeng, “Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection,” IEEE Trans. Image Process. 20(12), 3524–3533 (2011).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
[Crossref] [PubMed]

Zimmermann, H. W.

C. Bettinger and H. W. Zimmermann, “New investigations on hematoxylin, hematein, and hematein-aluminium complexes. II. Hematein-aluminium complexes and hemalum staining,” Histochemistry 96(3), 215–228 (1991).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Acta Histochem. (1)

J. Jakubovský, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, “Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen,” Acta Histochem. 104(4), 353–356 (2002).
[Crossref] [PubMed]

Diagn. Pathol. (1)

M. R. Castellanos, A. Szerszen, S. Gundry, E. C. Pirog, M. Maiman, S. Rajupet, J. P. Gomez, A. Davidov, P. R. Debata, P. Banerjee, and J. E. Fata, “Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence,” Diagn. Pathol. 10(1), 119 (2015).
[Crossref] [PubMed]

Histochem. Cell Biol. (1)

H. F. Carvalho and S. R. Taboga, “Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections,” Histochem. Cell Biol. 106(6), 587–592 (1996).
[Crossref] [PubMed]

Histochemistry (1)

C. Bettinger and H. W. Zimmermann, “New investigations on hematoxylin, hematein, and hematein-aluminium complexes. II. Hematein-aluminium complexes and hemalum staining,” Histochemistry 96(3), 215–228 (1991).
[Crossref] [PubMed]

IEEE Trans. Image Process. (6)

X. Li, B. Li, B. Yang, and T. Zeng, “General Framework to Histogram-Shifting-Based Reversible Data Hiding,” IEEE Trans. Image Process. 22(6), 2181–2191 (2013).
[Crossref] [PubMed]

W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive Histogram Modification: Establishing Equivalency between Reversible Data Hiding and Lossless Data Compression,” IEEE Trans. Image Process. 22(7), 2775–2785 (2013).
[Crossref] [PubMed]

I.-C. Dragoi and D. Coltuc, “Local-prediction-based difference expansion reversible watermarking,” IEEE Trans. Image Process. 23(4), 1779–1790 (2014).
[Crossref] [PubMed]

I.-C. Dragoi and D. Coltuc, “On local prediction based reversible watermarking,” IEEE Trans. Image Process. 24(4), 1244–1246 (2015).
[Crossref] [PubMed]

D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Trans. Image Process. 16(3), 721–730 (2007).
[Crossref] [PubMed]

X. Li, B. Yang, and T. Zeng, “Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection,” IEEE Trans. Image Process. 20(12), 3524–3533 (2011).
[Crossref] [PubMed]

IEEE Trans. Inf. Forensics Security (1)

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Roux, “Reversible watermarking based on invari- ant image classification and dynamical error histogram shifting,” IEEE Trans. Inf. Forensics Security 8(1), 111–120 (2013).
[Crossref]

Information Hiding (1)

M. Goljan, J. Fridrich, and R. Du, “Distortion-free data embedding for images,” Information Hiding 2137, 27–41 (2001).
[Crossref]

J. Biomed. Opt. (1)

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

J. Oral Pathol. Med. (1)

A. De Rossi, L. B. Rocha, and M. A. Rossi, “Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures,” J. Oral Pathol. Med. 36(6), 377–381 (2007).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Nature (1)

C. Smith, “Microscopy: Two microscopes are better than one,” Nature 492(7428), 293–297 (2012).
[Crossref] [PubMed]

Q. Rev. Biophys. (1)

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref] [PubMed]

Signal Process. (1)

X. Gui, X. Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Process. 98, 370–380 (2014).
[Crossref]

Transactions on Circuits and Systems for Video Technology (1)

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” Transactions on Circuits and Systems for Video Technology 19(7), 989–999 (2009).
[Crossref]

Other (5)

I.-C. Dragoi, S.G. Stanciu, R. Hristu, H.-G. Coanda, D.E. Tranca, M. Popescu and D. Coltuc, “Supportive code for [Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking, Biomedical Optics Express (2016)]” figshare (2016) [retrieved 6 February 2016] https://dx.doi.org/10.6084/m9.figshare.2073064.v1 .

I.-C. Dragoi and D. Coltuc, “Improved Rhombus Interpolation for Reversible Watermarking by Difference Expansion,” In Proceedings of the 20th European Signal Processing Conference (EUSIPCO2012), 1688–1692 (2012).

S. Inoue, “Foundations of confocal scanned imaging in light microscopy,” Handbook of Biological Confocal Microscopy (Springer, 2006) pp. 1–17.

I.-C. Dragoi, S. G. Stanciu, D. Coltuc, D. E. Tranca, R. Hristu, and G. A. Stanciu, “On packing laser scanning microscopy images by reversible watermarking: A case study,” In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO2015), 66–70 (2015).
[Crossref]

I. Cox, M. Miller, J. Bloom, J. Fridrich and T. Kalker, Digital Watermarking and Steganography (Morgan Kaufmann, 2007).

Supplementary Material (1)

NameDescription
» Code 1       Supportive code for: Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The proposed strategy for connecting LSM micrographs based on reversible watermarking. The Slave Image is embedded together with optional supportive text data into the Master Image; both images and the optional supportive text data can be restored from the watermarked Master Image.
Fig. 2
Fig. 2 Three sets of CLSM/TLSM images collected on a HE stained tissue fragment affected by SCC.
Fig. 3
Fig. 3 Average reversible watermarking results (a), and compression results (b), for the CLSM/TLSM image sets.
Fig. 4
Fig. 4 Embedding a TLSM SI in a CLSM MI. (a) Schematic diagram of the proposed watermark insertion strategy; TLSM SI (b) before and (c) after compression at 0.155 bpp; the corresponding CLSM MI (d) before and (e) after being watermarked with the compressed SI.
Fig. 5
Fig. 5 Embedding a CLSM SI in a TLSM MI. First row: compressed versions at 0.621 bpp (a), 0.933 bpp (b) and 1.325 bpp (c) of the CLSM SI in Fig. 4(d); Second row: watermarked versions with 0.621 bpp (d), 0.935 bpp (e) and 1.328 bpp (f) of the TLSM MI in Fig. 4(b).

Metrics