Abstract

We report an optical trapping method that may enable assessment of the differentiation status of cancerous cells by determining the minimum time required for cell-cell adhesion to occur. A single, live cell is trapped and brought into close proximity of another; the minimum contact time required for cell-cell adhesion to occur is measured using transformed cells from neural tumor cell lines: the human neuroblastoma SK-N-SH and rat C6 glioma cells. Earlier work on live adult rat hippocampal neural progenitors/stem cells had shown that a contact minimum of ~5 s was required for cells to adhere to each other. We now find the average minimum time for adhesion of cells from both tumor cell lines to substantially increase to ~20-25 s, in some cases up to 45 s. Upon in vitro differentiation of these cells with all-trans retinoic acid the average minimum time reverts to ~5-7 s. This proof-of-concept study indicates that optical trapping may be a quick, sensitive, and specific method for determining differentiation status and, thereby, the prognosis of cancer cells.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes

Ekaterina V. Gubarkova, Alexander A. Sovetsky, Vladimir Yu. Zaitsev, Alexander L. Matveyev, Dmitry A. Vorontsov, Marina A. Sirotkina, Lev A. Matveev, Anton A. Plekhanov, Nadezhda P. Pavlova, Sergei S. Kuznetsov, Alexey Yu. Vorontsov, Elena V. Zagaynova, and Natalia D. Gladkova
Biomed. Opt. Express 10(5) 2244-2263 (2019)

Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions

Axel Hagen, Dirk Grosenick, Rainer Macdonald, Herbert Rinneberg, Susen Burock, Peter Warnick, Alexander Poellinger, and Peter M. Schlag
Opt. Express 17(19) 17016-17033 (2009)

Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy in vivo

Mayank Goswami, Xinlei Wang, Pengfei Zhang, Wenwu Xiao, Sarah J. Karlen, Yuanpei Li, Robert J. Zawadzki, Marie E. Burns, Kit S. Lam, and Edward N. Pugh
Biomed. Opt. Express 10(1) 151-166 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kornyshev, “From biologically-inspired physics to physics-inspired biology,” J. Phys. Condens. Matter 22(41), 410401 (2010).
    [Crossref] [PubMed]
  2. M. Gruebele and D. Thirumalai, “Perspective: Reaches of chemical physics in biology,” J. Chem. Phys. 139(12), 121701 (2013).
    [Crossref] [PubMed]
  3. D. Mathur, “Biology-inspired AMO physics,” J. Phys. B 48(2), 022001 (2015).
    [Crossref]
  4. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
    [Crossref] [PubMed]
  5. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [Crossref] [PubMed]
  6. P. Katira, M. H. Zaman, and R. T. Bonnecaze, “How changes in cell mechanical properties induce cancerous behavior,” Phys. Rev. Lett. 108(2), 028103 (2012).
    [Crossref] [PubMed]
  7. R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
    [Crossref] [PubMed]
  8. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
    [Crossref] [PubMed]
  9. U. Ladiwala, H. Basu, and D. Mathur, “Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap,” PLoS One 7(6), e38613 (2012).
    [Crossref] [PubMed]
  10. H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
    [Crossref] [PubMed]
  11. A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
    [Crossref] [PubMed]
  12. S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
    [PubMed]
  13. B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
    [Crossref] [PubMed]
  14. K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
    [Crossref] [PubMed]
  15. P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
    [Crossref] [PubMed]
  16. J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
    [Crossref] [PubMed]
  17. C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
    [Crossref] [PubMed]
  18. V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
    [Crossref] [PubMed]
  19. P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
    [PubMed]
  20. N. Pouliot, H. B. Pearson, and A. Burrows, “Investigating metastasis using in vitro platforms” in Metastatic Cancer: Clinical and Biological Perspectives, Rahul Jandial (ed) (Landes Bioscience, 2013).
  21. J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer 5(11), 845–856 (2005).
    [Crossref] [PubMed]
  22. S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
    [Crossref] [PubMed]

2015 (1)

D. Mathur, “Biology-inspired AMO physics,” J. Phys. B 48(2), 022001 (2015).
[Crossref]

2014 (1)

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

2013 (2)

M. Gruebele and D. Thirumalai, “Perspective: Reaches of chemical physics in biology,” J. Chem. Phys. 139(12), 121701 (2013).
[Crossref] [PubMed]

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

2012 (4)

P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
[Crossref] [PubMed]

P. Katira, M. H. Zaman, and R. T. Bonnecaze, “How changes in cell mechanical properties induce cancerous behavior,” Phys. Rev. Lett. 108(2), 028103 (2012).
[Crossref] [PubMed]

U. Ladiwala, H. Basu, and D. Mathur, “Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap,” PLoS One 7(6), e38613 (2012).
[Crossref] [PubMed]

A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
[Crossref] [PubMed]

2010 (3)

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

A. A. Kornyshev, “From biologically-inspired physics to physics-inspired biology,” J. Phys. Condens. Matter 22(41), 410401 (2010).
[Crossref] [PubMed]

2008 (1)

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

2007 (3)

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

2006 (1)

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

2005 (2)

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer 5(11), 845–856 (2005).
[Crossref] [PubMed]

2004 (1)

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

2000 (1)

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref] [PubMed]

1988 (1)

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Ahmadi, R.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Ananthakrishnan, R.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Baklaushev, V. P.

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Bambardekar, K.

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

Basu, H.

U. Ladiwala, H. Basu, and D. Mathur, “Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap,” PLoS One 7(6), e38613 (2012).
[Crossref] [PubMed]

P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
[Crossref] [PubMed]

Beckhove, P.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Biedler, J. L.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Bonnecaze, R. T.

P. Katira, M. H. Zaman, and R. T. Bonnecaze, “How changes in cell mechanical properties induce cancerous behavior,” Phys. Rev. Lett. 108(2), 028103 (2012).
[Crossref] [PubMed]

Campos, B.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Chekhonin, V. P.

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Chen, J. M.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Cheung, N.-K. V.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Choi, W.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Combs, S. E.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Cross, S. E.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Dasari, R. R.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Dharmadhikari, A. K.

P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
[Crossref] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

Dharmadhikari, J. A.

P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
[Crossref] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

Dictus, C.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

DiPette, D.

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

Domcke, S.

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

Eckstein, V.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Ernst, A.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Farhadi, M.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Fu, X. M.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Fujitani, T.

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

Gdynia, G.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Gimzewski, J. K.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Goidts, V.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Gruebele, M.

M. Gruebele and D. Thirumalai, “Perspective: Reaches of chemical physics in biology,” J. Chem. Phys. 139(12), 121701 (2013).
[Crossref] [PubMed]

Guck, J.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Guleria, R.

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

Guo, H.-F.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Gurina, O. I.

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Hamza, B.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Helmke, B. M.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Herold-Mende, C.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Hochhaus, G.

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Irimia, D.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Jin, Y. S.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Jögi, A.

A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
[Crossref] [PubMed]

Johansson, M.

A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
[Crossref] [PubMed]

Joshi, S.

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

Kanemura, Y.

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

Käs, J.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref] [PubMed]

Katira, P.

P. Katira, M. H. Zaman, and R. T. Bonnecaze, “How changes in cell mechanical properties induce cancerous behavior,” Phys. Rev. Lett. 108(2), 028103 (2012).
[Crossref] [PubMed]

Kattan, D. R.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Kino-Oka, M.

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

Kornyshev, A. A.

A. A. Kornyshev, “From biologically-inspired physics to physics-inspired biology,” J. Phys. Condens. Matter 22(41), 410401 (2010).
[Crossref] [PubMed]

Kumari, P.

Ladiwala, U.

U. Ladiwala, H. Basu, and D. Mathur, “Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap,” PLoS One 7(6), e38613 (2012).
[Crossref] [PubMed]

Levin, V.

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Levine, D. A.

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

Li, J.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Li, M. W.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Lichter, P.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Lincoln, B.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Lohr, J.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Ludwig, J. A.

J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer 5(11), 845–856 (2005).
[Crossref] [PubMed]

Lue, N.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

MacKintosh, F. C.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref] [PubMed]

Mahaffy, R. E.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref] [PubMed]

Martel, J.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Mathur, D.

D. Mathur, “Biology-inspired AMO physics,” J. Phys. B 48(2), 022001 (2015).
[Crossref]

U. Ladiwala, H. Basu, and D. Mathur, “Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap,” PLoS One 7(6), e38613 (2012).
[Crossref] [PubMed]

P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
[Crossref] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

Mei, J. M.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Mori, H.

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

Nádasdi, L.

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Ni, Y. F.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Niu, C. S.

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

Pahlman, S.

A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
[Crossref] [PubMed]

Pan, J.

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

Pavlov, K. A.

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Preis, P. N.

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Radlwimmer, B.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Rao, J.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Romeyke, M.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Ross, R. A.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Roth, W.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Sadée, W.

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Sander, C.

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

Saya, H.

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Schinkinger, S.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Schultz, N.

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

Sharma, S.

P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
[Crossref] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

Shih, C. K.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref] [PubMed]

Singh, U. S.

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

Sinha, R.

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

So, P.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Spengler, B. A.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Sung, Y.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Tagscherer, K. E.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Taya, M.

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

Thirumalai, D.

M. Gruebele and D. Thirumalai, “Perspective: Reaches of chemical physics in biology,” J. Chem. Phys. 139(12), 121701 (2013).
[Crossref] [PubMed]

Thomas, S. K.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Ukhova, O. V.

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Unterberg, A.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Vaapil, M.

A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
[Crossref] [PubMed]

Walton, J. D.

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Wan, F.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Weinstein, J. N.

J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer 5(11), 845–856 (2005).
[Crossref] [PubMed]

Wottawah, F.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Yaqoob, Z.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Yusubalieva, G. M.

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Zaman, M. H.

P. Katira, M. H. Zaman, and R. T. Bonnecaze, “How changes in cell mechanical properties induce cancerous behavior,” Phys. Rev. Lett. 108(2), 028103 (2012).
[Crossref] [PubMed]

Zeppernick, F.

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

Bull. Exp. Biol. Med. (1)

V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, K. A. Pavlov, O. V. Ukhova, and O. I. Gurina, “Modeling and immunohistochemical analysis of C6 glioma in vivo,” Bull. Exp. Biol. Med. 143(4), 501–509 (2007).
[Crossref] [PubMed]

Cancer Res. (1)

P. N. Preis, H. Saya, L. Nádasdi, G. Hochhaus, V. Levin, and W. Sadée, “Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A,” Cancer Res. 48(22), 6530–6534 (1988).
[PubMed]

Clin. Cancer Res. (1)

B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K. E. Tagscherer, R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S. E. Combs, V. Goidts, B. M. Helmke, V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, and C. Herold-Mende, “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clin. Cancer Res. 16(10), 2715–2728 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[Crossref] [PubMed]

J. Biosci. Bioeng. (1)

H. Mori, T. Fujitani, Y. Kanemura, M. Kino-Oka, and M. Taya, “Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells,” J. Biosci. Bioeng. 104(3), 231–234 (2007).
[Crossref] [PubMed]

J. Chem. Phys. (1)

M. Gruebele and D. Thirumalai, “Perspective: Reaches of chemical physics in biology,” J. Chem. Phys. 139(12), 121701 (2013).
[Crossref] [PubMed]

J. Exp. Clin. Cancer Res. (1)

C. S. Niu, M. W. Li, Y. F. Ni, J. M. Chen, J. M. Mei, J. Li, and X. M. Fu, “Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells,” J. Exp. Clin. Cancer Res. 29(1), 113–121 (2010).
[Crossref] [PubMed]

J. Phys. B (1)

D. Mathur, “Biology-inspired AMO physics,” J. Phys. B 48(2), 022001 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

A. A. Kornyshev, “From biologically-inspired physics to physics-inspired biology,” J. Phys. Condens. Matter 22(41), 410401 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Domcke, R. Sinha, D. A. Levine, C. Sander, and N. Schultz, “Evaluating cell lines as tumour models by comparison of genomic profiles,” Nat. Commun. 4, 2126–2136 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer 5(11), 845–856 (2005).
[Crossref] [PubMed]

Neoplasia (1)

J. D. Walton, D. R. Kattan, S. K. Thomas, B. A. Spengler, H.-F. Guo, J. L. Biedler, N.-K. V. Cheung, and R. A. Ross, “Characteristics of Stem Cells from Human Neuroblastoma Cell Lines and in Tumors,” Neoplasia 6(6), 838–845 (2004).
[Crossref] [PubMed]

Oncogene (1)

S. Joshi, R. Guleria, J. Pan, D. DiPette, and U. S. Singh, “Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells,” Oncogene 25(2), 240–247 (2006).
[PubMed]

Opt. Express (1)

Phys. Rev. Appl. (1)

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

P. Katira, M. H. Zaman, and R. T. Bonnecaze, “How changes in cell mechanical properties induce cancerous behavior,” Phys. Rev. Lett. 108(2), 028103 (2012).
[Crossref] [PubMed]

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

PLoS One (1)

U. Ladiwala, H. Basu, and D. Mathur, “Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap,” PLoS One 7(6), e38613 (2012).
[Crossref] [PubMed]

Ups. J. Med. Sci. (1)

A. Jögi, M. Vaapil, M. Johansson, and S. Pahlman, “Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors,” Ups. J. Med. Sci. 117(2), 217–224 (2012).
[Crossref] [PubMed]

Other (1)

N. Pouliot, H. B. Pearson, and A. Burrows, “Investigating metastasis using in vitro platforms” in Metastatic Cancer: Clinical and Biological Perspectives, Rahul Jandial (ed) (Landes Bioscience, 2013).

Supplementary Material (2)

NameDescription
» Visualization 1: MPEG (2734 KB)      Real time movie depicting an untreated C6 glioma cell made to approach another. The trap is moved after every (n+5) second where, n= 0, 5, 10, 15 seconds. Cells are allowed to remain in contact till they adhere.
» Visualization 2: MPEG (4228 KB)      Real-time movie showing how two ATRA-treated C6 glioma cells that, after 4 s contact, remain adhered to each other.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of our optical trap (see text). Cell trapping occurred on the microscope slide placed after the oil-immersed 100X objective. DM: dichroic mirrors, FL: filters.
Fig. 2
Fig. 2 Dependence of minimum time for cell-cell adhesion on differentiation status of malignant cells. Time lapse images from real time movies depicting (a) an untreated C6 glioma cell made to approach another (Visualization 1). The trap is moved after every (n + 5) second where n = 0, 5, 10, 15 s. Cells were allowed to remain in contact till they could not be pulled apart by the trap: the time taken was designated the minimum time for cell-cell adhesion. The white cross denotes the trapped cell. In the first three frames, another cell is made to approach the trapped cell in the direction of the arrow. As the trap is moved away after 9 s, the cells are seen to separate. Eventually, the cells remain adhered to each other (last two frames). (b) Similar time lapse images from real-time movies for ATRA-treated C6 glioma cells showing adherence after 4 s contact (Visualization 2). (c), (d) Percentage of undifferentiated and ATRA-treated cells undergoing irreversible cell adhesion at different time points (see text). (c) SK-N-SH cells; (d) C6 glioma cells. *** denotes statistical significance where p<0.001 for adhesion times of untreated and ATRA-treated cells.
Fig. 3
Fig. 3 Bright-field microscopy images of (a) untreated and (b) ATRA-treated C6 glioma cells, and of (e) untreated and (f) ATRA-treated SK-N-SH neuroblastoma cells. Expression of GFAP in untreated C6 cells (c) and in ATRA-treated C6 cells (d). Expression of β-tubulin III in undifferentiated SK-N-SH cells (g) showing low expression in a few cells and in ATRA-treated SK-N-SH cells (h) with moderate or intense expression in most cells. The white scale bar denotes 10 µm.

Metrics