Abstract

Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of–interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT)

Qian Li, Maristela L. Onozato, Peter M. Andrews, Chao-Wei Chen, Andrew Paek, Renee Naphas, Shuai Yuan, James Jiang, Alex Cable, and Yu Chen
Opt. Express 17(18) 16000-16016 (2009)

Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography

Anna Szkulmowska, Maciej Szkulmowski, Daniel Szlag, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 17(13) 10584-10598 (2009)

Optical coherence tomography of cell dynamics in three-dimensional tissue models

Wei Tan, Amy L. Oldenburg, James J. Norman, Tejal A. Desai, and Stephen A. Boppart
Opt. Express 14(16) 7159-7171 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
    [Crossref] [PubMed]
  2. S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
    [Crossref] [PubMed]
  3. W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
    [Crossref] [PubMed]
  4. J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
    [Crossref] [PubMed]
  5. T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
    [Crossref] [PubMed]
  6. M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
    [Crossref] [PubMed]
  7. X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
    [Crossref] [PubMed]
  8. N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
    [Crossref] [PubMed]
  9. T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
    [Crossref] [PubMed]
  10. F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
    [Crossref] [PubMed]
  11. S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
    [Crossref] [PubMed]
  12. K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
    [Crossref] [PubMed]
  13. G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
    [PubMed]
  14. Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
    [Crossref] [PubMed]
  15. S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
    [Crossref] [PubMed]
  16. A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
    [Crossref] [PubMed]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  18. J. Fujimoto and W. Drexler, “Introduction to Optical Coherence Tomography,” in Optical Coherence Tomography, W. Drexler and J. Fujimoto, eds. (Springer Berlin Heidelberg, 2008), pp. 1–45.
  19. X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
    [Crossref] [PubMed]
  20. K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
    [Crossref] [PubMed]
  21. D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
    [Crossref] [PubMed]
  22. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006).
    [Crossref] [PubMed]
  23. M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
    [Crossref] [PubMed]
  24. S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
    [Crossref] [PubMed]
  25. C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
    [Crossref] [PubMed]
  26. S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
    [Crossref] [PubMed]
  27. H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
    [Crossref] [PubMed]
  28. H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
    [Crossref] [PubMed]
  29. M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
    [Crossref] [PubMed]
  30. J. T. LaCroix, J. Xia, and M. A. Haidekker, “A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets,” Ann. Biomed. Eng. 37(7), 1348–1357 (2009).
    [Crossref] [PubMed]
  31. G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
    [Crossref] [PubMed]
  32. A. Paek, M. W. Betz, J. Jiang, A. Cable, J. P. Fisher, and Y. Chen, “Quantitative Assessment of Macroporous Cell Scaffold Structures using Optical Coherence Tomography (OCT),” 2009 IEEE/NIH Life Science Systems and Applications Workshop. (IEEE, 2009), pp. 170–172.
    [Crossref]
  33. M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
    [Crossref] [PubMed]
  34. J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
    [Crossref] [PubMed]
  35. M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
    [Crossref] [PubMed]
  36. S. Wüst, R. Müller, and S. Hofmann, “3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding,” J. Biomed. Mater. Res. A 103(8), 2558–2570 (2015).
    [Crossref] [PubMed]
  37. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
    [Crossref] [PubMed]
  38. H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
    [Crossref] [PubMed]
  39. Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
    [Crossref] [PubMed]
  40. Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
    [Crossref] [PubMed]
  41. T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
    [Crossref]
  42. C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” J. Biomed. Mater. Res. A 78(4), 676–683 (2006).
    [Crossref] [PubMed]
  43. W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
    [Crossref]
  44. Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
    [Crossref] [PubMed]

2015 (1)

S. Wüst, R. Müller, and S. Hofmann, “3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding,” J. Biomed. Mater. Res. A 103(8), 2558–2570 (2015).
[Crossref] [PubMed]

2014 (2)

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
[Crossref] [PubMed]

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

2013 (3)

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

2012 (5)

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
[Crossref] [PubMed]

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

2011 (5)

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

2010 (5)

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

2009 (7)

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
[Crossref] [PubMed]

J. T. LaCroix, J. Xia, and M. A. Haidekker, “A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets,” Ann. Biomed. Eng. 37(7), 1348–1357 (2009).
[Crossref] [PubMed]

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

2008 (4)

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
[Crossref] [PubMed]

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

2007 (2)

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

2006 (5)

C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” J. Biomed. Mater. Res. A 78(4), 676–683 (2006).
[Crossref] [PubMed]

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006).
[Crossref] [PubMed]

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

2005 (2)

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
[Crossref] [PubMed]

W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Accoto, D.

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
[Crossref] [PubMed]

Alblas, J.

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

Anastasio, M. A.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Anderson, P.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Andrews, P. M.

Appel, A. A.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Asamura, S.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Bagnaninchi, P. O.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Barradas, A. M. C.

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

Barton, J. K.

G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
[Crossref] [PubMed]

Becker, M. L.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Betz, M. W.

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

Billiet, T.

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

Bonnema, G. T.

G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
[Crossref] [PubMed]

Boppart, S. A.

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006).
[Crossref] [PubMed]

Brey, E. M.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Brezinski, M. E.

K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
[Crossref] [PubMed]

Cable, A.

Cardinal, K. O.

G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
[Crossref] [PubMed]

Caridade, S. G.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

Chai, Y. C.

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C. W.

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

Chen, Y.

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

Chen, Z.

Cheng, J.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Cho, D. W.

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

Choi, B.

Chou, S. M.

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

Choudhury, N.

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Chua, C. K.

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

Cornelissen, M.

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

Darling, A.

W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
[Crossref]

Davis, G. R.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

de Boer, J.

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

de Bruin, A.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

De Schryver, T.

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

De Wijn, J. R.

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

Desai, T. A.

Devlin, A. H.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Dhert, W. J. A.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

Dorsey, S. M.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Drexler, W.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Dubois, A.

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

Dubruel, P.

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

Dunlop, J. W.

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

El Haj, A.

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

Fedorovich, N. E.

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

Feijen, J.

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

Fisher, J. P.

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

Flaim, G. M.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fratzl, P.

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gawlitta, D.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

Ge, Y.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

Gevaert, E.

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

Giannitelli, S. M.

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
[Crossref] [PubMed]

Graf, B. W.

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grijpma, D. W.

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

Haidekker, M. A.

J. T. LaCroix, J. Xia, and M. A. Haidekker, “A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets,” Ann. Biomed. Eng. 37(7), 1348–1357 (2009).
[Crossref] [PubMed]

Haj, A. E.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Hanson, S. R.

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Harwood, A.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hennink, W. E.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

Hermann, B.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Hinds, M. T.

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Hofer, B.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Hofmann, S.

S. Wüst, R. Müller, and S. Hofmann, “3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding,” J. Biomed. Mater. Res. A 103(8), 2558–2570 (2015).
[Crossref] [PubMed]

Hollister, S. J.

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, H.

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

Isogai, N.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Jacques, S. L.

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Jeon, Y. C.

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

Jia, W.

Jia, Y.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Jiang, J.

Jones, J. R.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Kandel, R. A.

C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” J. Biomed. Mater. Res. A 78(4), 676–683 (2006).
[Crossref] [PubMed]

Kerckhofs, G.

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Khristov, V.

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

Kim, G.

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

Kim, J. Y.

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

Kim, W.

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

Kirkpatrick, S. J.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Koh, Y.

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

Kohn, J.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Kojima, N.

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

Konerding, M. A.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Kruth, J. P.

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Kuiper, R. V.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

Kusuhara, H.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

LaCroix, J. T.

J. T. LaCroix, J. Xia, and M. A. Haidekker, “A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets,” Ann. Biomed. Eng. 37(7), 1348–1357 (2009).
[Crossref] [PubMed]

Landis, W. J.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Larson, J. C.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Lee, P. D.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Levitz, D.

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Li, J.

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

Li, Q.

Li, Y.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

Liang, X.

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, F.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Lin-Gibson, S.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Liu, B.

K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
[Crossref] [PubMed]

Liu, F.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Liu, G.

Liu, H.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Liu, L.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

Liu, M. J. J.

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

Lu, Q.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Malda, J.

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

Mano, J. F.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

Melchels, F. P. W.

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

Mitchell, C. A.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Moesen, M.

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Müller, R.

S. Wüst, R. Müller, and S. Hofmann, “3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding,” J. Biomed. Mater. Res. A 103(8), 2558–2570 (2015).
[Crossref] [PubMed]

Nam, J.

W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
[Crossref]

Naphas, R.

Ng, B. K.

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

Niino, T.

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

Norman, J. J.

Ohashi, K.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Oizumi, S.

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

Okano, T.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Oldenburg, A. L.

Onozato, M. L.

Paek, A.

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

Pan, Y.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Park, J.

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

Park, M.

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

Park, S.

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

Pilliar, R. M.

C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” J. Biomed. Mater. Res. A 78(4), 676–683 (2006).
[Crossref] [PubMed]

Poologasundarampillai, G.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Pot, M. W.

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

Potter, K.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Povazay, B.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qin, X. P.

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

Rainer, A.

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
[Crossref] [PubMed]

Reis, R. L.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

Rey, S. M.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Rockett, P.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Rumpler, M.

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

Rupnick, M. A.

K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
[Crossref] [PubMed]

Sainz, J.

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

Sakai, Y.

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

Schelfhout, J.

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

Schrooten, J.

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Schumacher, G. E.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schuurman, W.

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

Seki, M.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Seyednejad, H.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

Shim, J. H.

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

Simon, C. G.

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Sobral, J. M.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

Sousa, R. A.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

Spiteri, C. G.

C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” J. Biomed. Mater. Res. A 78(4), 676–683 (2006).
[Crossref] [PubMed]

Starly, B.

W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, V.

Sun, W.

W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
[Crossref]

Suo, H.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sweet, D. E.

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Tan, W.

Tatsumi, K.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Tay, B. C. M.

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

Tran, N. T.

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Trombetta, M.

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
[Crossref] [PubMed]

Truscello, S.

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Unterhuber, A.

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Utoh, R.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Van Bael, S.

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

van Blitterswijk, C. A.

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

Van de Putte, T.

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

van Dongen, J. T.

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

van Nostrum, C. F.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

Van Oosterwyck, H.

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

Van Vlierberghe, S.

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

van Weeren, P. R.

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

Vandenhaute, M.

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

Verbout, A. J.

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

Vermonden, T.

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

Wang, Q.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

Wang, R. K.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

Wang, X.

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Wang, X. H.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

Wevers, M.

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

Williams, S. K.

G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
[Crossref] [PubMed]

Woesz, A.

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

Wu, R.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Wu, R. D.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

Wüst, S.

S. Wüst, R. Müller, and S. Hofmann, “3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding,” J. Biomed. Mater. Res. A 103(8), 2558–2570 (2015).
[Crossref] [PubMed]

Xia, J.

J. T. LaCroix, J. Xia, and M. A. Haidekker, “A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets,” Ann. Biomed. Eng. 37(7), 1348–1357 (2009).
[Crossref] [PubMed]

Xiong, Z.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Xu, M.

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

Xu, Y.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

Yamada, M.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Yamato, M.

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

Yan, Y.

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Yan, Y. N.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

Yang, Y.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

Yao, R.

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

Yao, Z.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Yuan, S.

Yue, S.

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

Zhang, R.

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Zhang, R. J.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

Zhang, T.

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

Zheng, K.

K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
[Crossref] [PubMed]

Acta Biomater. (5)

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater. 10(2), 580–594 (2014).
[Crossref] [PubMed]

F. P. W. Melchels, A. M. C. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma, “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomater. 6(11), 4208–4217 (2010).
[Crossref] [PubMed]

S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomater. 8(7), 2824–2834 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, W. J. A. Dhert, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater. 7(5), 1999–2006 (2011).
[Crossref] [PubMed]

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, “Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency,” Acta Biomater. 7(3), 1009–1018 (2011).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. T. LaCroix, J. Xia, and M. A. Haidekker, “A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets,” Ann. Biomed. Eng. 37(7), 1348–1357 (2009).
[Crossref] [PubMed]

Biofabrication (3)

M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, and Y. Xu, “Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering,” Biofabrication 2(2), 025002 (2010).
[Crossref] [PubMed]

W. Schuurman, V. Khristov, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, and J. Malda, “Bioprinting of hybrid tissue constructs with tailorable mechanical properties,” Biofabrication 3(2), 021001 (2011).
[Crossref] [PubMed]

J. H. Shim, J. Y. Kim, M. Park, J. Park, and D. W. Cho, “Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology,” Biofabrication 3(3), 034102 (2011).
[Crossref] [PubMed]

Biomaterials (8)

T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, “A Review of trends and limitations in hydrogel-rapid prototyping for tissue engineering,” Biomaterials 33(26), 6020–6041 (2012).
[Crossref] [PubMed]

M. Xu, X. Wang, Y. Yan, R. Yao, and Y. Ge, “An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix,” Biomaterials 31(14), 3868–3877 (2010).
[Crossref] [PubMed]

T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel, “The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability,” Biomaterials 35(1), 49–62 (2014).
[Crossref] [PubMed]

Y. Yang, S. M. Dorsey, M. L. Becker, S. Lin-Gibson, G. E. Schumacher, G. M. Flaim, J. Kohn, and C. G. Simon., “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods,” Biomaterials 29(12), 1901–1911 (2008).
[Crossref] [PubMed]

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki, “Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions,” Biomaterials 33(33), 8304–8315 (2012).
[Crossref] [PubMed]

H. Seyednejad, D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink, “In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone),” Biomaterials 33(17), 4309–4318 (2012).
[Crossref] [PubMed]

H. Huang, S. Oizumi, N. Kojima, T. Niino, and Y. Sakai, “Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials 28(26), 3815–3823 (2007).
[Crossref] [PubMed]

Bone (1)

K. Potter, D. E. Sweet, P. Anderson, G. R. Davis, N. Isogai, S. Asamura, H. Kusuhara, and W. J. Landis, “Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography,” Bone 38(3), 350–358 (2006).
[Crossref] [PubMed]

Comput. Aided Des. (1)

W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Des. 37(11), 1097–1114 (2005).
[Crossref]

Eur. Cell. Mater. (1)

G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte, and J. Schrooten, “Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions,” Eur. Cell. Mater. 25, 179–189 (2013).
[PubMed]

J. Bioact. Compat. Polym. (1)

T. Zhang, Y. N. Yan, X. H. Wang, Z. Xiong, F. Lin, R. D. Wu, and R. J. Zhang, “Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury,” J. Bioact. Compat. Polym. 22(1), 19–29 (2007).
[Crossref]

J. Biomed. Mater. Res. A (2)

C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” J. Biomed. Mater. Res. A 78(4), 676–683 (2006).
[Crossref] [PubMed]

S. Wüst, R. Müller, and S. Hofmann, “3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding,” J. Biomed. Mater. Res. A 103(8), 2558–2570 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt. 15(2), 026019 (2010).
[Crossref] [PubMed]

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14(3), 034014 (2009).
[Crossref] [PubMed]

J. Biophotonics (2)

S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Med. (2)

S. Yue, P. D. Lee, G. Poologasundarampillai, Z. Yao, P. Rockett, A. H. Devlin, C. A. Mitchell, M. A. Konerding, and J. R. Jones, “Synchrotron X-ray microtomography for assessment of bone tissue scaffolds,” J. Mater. Sci. Mater. Med. 21(3), 847–853 (2010).
[Crossref] [PubMed]

S. Park, G. Kim, Y. C. Jeon, Y. Koh, and W. Kim, “3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system,” J. Mater. Sci. Mater. Med. 20(1), 229–234 (2009).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface 5(27), 1173–1180 (2008).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng, “The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography,” Med. Eng. Phys. 35(2), 253–262 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
[Crossref] [PubMed]

Open Tissue Eng. Regen. Med. J. (1)

K. Zheng, M. A. Rupnick, B. Liu, and M. E. Brezinski, “Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Eng. Regen. Med. J. 2(1), 8–13 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Med. Biol. (2)

Y. Yang, A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang, “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51(7), 1649–1659 (2006).
[Crossref] [PubMed]

G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53(12), 3083–3098 (2008).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tissue Eng. (1)

X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu, “Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system,” Tissue Eng. 12(1), 83–90 (2006).
[Crossref] [PubMed]

Tissue Eng. Part A (1)

N. E. Fedorovich, J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. A. Dhert, “Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing,” Tissue Eng. Part A 14(1), 127–133 (2008).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

C. W. Chen, M. W. Betz, J. P. Fisher, A. Paek, and Y. Chen, “Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography,” Tissue Eng. Part C Methods 17(1), 101–112 (2011).
[Crossref] [PubMed]

Other (2)

A. Paek, M. W. Betz, J. Jiang, A. Cable, J. P. Fisher, and Y. Chen, “Quantitative Assessment of Macroporous Cell Scaffold Structures using Optical Coherence Tomography (OCT),” 2009 IEEE/NIH Life Science Systems and Applications Workshop. (IEEE, 2009), pp. 170–172.
[Crossref]

J. Fujimoto and W. Drexler, “Introduction to Optical Coherence Tomography,” in Optical Coherence Tomography, W. Drexler and J. Fujimoto, eds. (Springer Berlin Heidelberg, 2008), pp. 1–45.

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (9932 KB)      Three-dimensional observation of the hydrogel polymer matrix segmented from OCT images. Three-dimensional images are analyzed using a depth range of 0-3mm.
» Visualization 2: MOV (9975 KB)      The internal pore structure and complex flow channel networks of the six different scaffolds acquired from OCT images.
» Visualization 3: MOV (9965 KB)      Decomposition of hydrogel matrix with respect to the accessibility of pores.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The designed 3D macroporous scaffolds. The key transverse section images are shown as a top view at a depth of 1mm measured from the surface of the hydrogel. The designed material networks and channel networks are given for comparison with the as-produced scaffolds. T triangular pore shape; R rectangular pore shape; H hexagonal pore shape.
Fig. 2
Fig. 2 Sequential methodology for the processing of SS-OCT images to quantify hydrogel scaffold microstructure. (A) raw en face image; (B) contrast-enhanced image; (C) median filtered image; (D) segmentation image; (E) morphologically opened image; (F) contour-extracted image.
Fig. 3
Fig. 3 Automatic region selection (denoted by different number values), enabling analysis of each isolated region.
Fig. 4
Fig. 4 General flow chart of the automatic image processing and analyzing algorithm.
Fig. 5
Fig. 5 (A1–A6) Cross-sectional and (B1–B6) en face OCT images at the surface of the hydrogel scaffolds fabricated using different design parameters. (C1-C6) en face images were taken at a depth of 1 mm. (D1–D6) 3D observation of the hydrogel polymer matrix segmented from OCT images (see Visualization 1). 3D images were analyzed using a depth range of 0–2mm. SP, the shrinkage of the superficial pores; FP, fused pores; UMP, undefined micropores; MS, the stacking of excessive materials; CP, closed pores. Scale bars are all 500 μm.
Fig. 6
Fig. 6 The internal pore structure and flow channel networks of the six different scaffolds acquired from OCT images (see Visualization 2). LC, lateral connectivity; PCP, partially connected pores; ULC, undefined lateral connectivity; BE, blind ends; IP, inaccessible pores.
Fig. 7
Fig. 7 (a) a representative en face OCT image (XY) of R400 scaffold; (b) corresponding segmented image of (a), void region is highlighted by blue color; (c) a digital phase-contrast microscopy image of the same scaffold on the part of the same region. (d) Histogram of the estimated PS from the en face OCT image (a) by computer analysis with our proposed algorithm; (e) Histogram of the estimated PS from the same OCT image by a human observer; (f) Histogram of the estimated PS from the microscopy image (c).
Fig. 8
Fig. 8 The respective quantitative results of the PS, SF, StS, and CD of a scaffold.
Fig. 9
Fig. 9 StS distributions assessed by 2D en face OCT image analysis of the six different as-produced scaffolds (n = 6).
Fig. 10
Fig. 10 PS distributions assessed by 2D en face OCT image analysis of the six different as-produced scaffolds (n = 6).
Fig. 11
Fig. 11 Decomposition of channel networks with respect to the connectivity with outside (see Visualization 3).

Tables (1)

Tables Icon

Table 1 Structure characterization results for the six different scaffold designs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

PS=2× Area/π
SF= P 2 4π×Area
CD=2×min( dist. bB (b,s) )
StS(I)=min( dist. bI (I,J) )
VP= V pore V total ×100%
Ssa= S pc V total
PC= V accessible V total ×100%

Metrics