Abstract

In this work we present and validate a wide-field method for the real-time mapping of tissue absorption, scattering and blood flow properties over wide regions of tissue (15 cm x 15 cm) with high temporal resolution (50 frames per second). We achieve this by applying Fourier Domain demodulation techniques to coherent spatial frequency domain imaging to extract optical properties and speckle flow index from a single snapshot. Applying this technique to forearm reactive hyperemia protocols demonstrates the ability to resolve intrinsic physiological signals such as the heart beat waveform and the buildup of deoxyhemoglobin associated with oxygen consumption.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light

Xinlin Chen, Weihao Lin, Chenge Wang, Shaoheng Chen, Jing Sheng, Bixin Zeng, and M. Xu
Biomed. Opt. Express 8(12) 5468-5482 (2017)

Real-time, profile-corrected single snapshot imaging of optical properties

Martijn van de Giessen, Joseph P. Angelo, and Sylvain Gioux
Biomed. Opt. Express 6(10) 4051-4062 (2015)

Real-time optical properties and oxygenation imaging using custom parallel processing in the spatial frequency domain

Enagnon Aguénounon, Foudil Dadouche, Wilfried Uhring, and Sylvain Gioux
Biomed. Opt. Express 10(8) 3916-3928 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Ratner, C. O. Thomas, and D. Bickers, “The uses of digital photography in dermatology,” J. Am. Acad. Dermatol. 41(5), 749–756 (1999).
    [Crossref] [PubMed]
  2. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
    [Crossref] [PubMed]
  3. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
    [Crossref] [PubMed]
  4. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
    [Crossref]
  5. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
    [Crossref] [PubMed]
  6. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
    [Crossref] [PubMed]
  7. T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
    [Crossref] [PubMed]
  8. M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
    [Crossref] [PubMed]
  9. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [Crossref]
  10. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref] [PubMed]
  11. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
    [Crossref] [PubMed]
  12. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref] [PubMed]
  13. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [Crossref] [PubMed]
  14. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
  15. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28(23), 2339–2341 (2003).
    [Crossref] [PubMed]
  16. A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).
  17. S. D. Konecky, T. Rice, A. J. Durkin, and B. J. Tromberg, “Imaging scattering orientation with spatial frequency domain imaging,” J. Biomed. Opt. 16(12), 126001 (2011).
    [Crossref] [PubMed]
  18. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
    [Crossref] [PubMed]
  19. T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
    [PubMed]
  20. K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
    [Crossref] [PubMed]
  21. J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
    [Crossref] [PubMed]
  22. M. van de Giessen, J. P. Angelo, and S. Gioux, “Real-time, profile-corrected single snapshot imaging of optical properties,” Biomed. Opt. Express 6(10), 4051–4062 (2015).
    [Crossref] [PubMed]
  23. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
    [Crossref] [PubMed]
  24. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Biomedical Optics (BiOS)2008(International Society for Optics and Photonics2008), pp. 687007.
  25. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
  26. M. Eliakim, D. Sapoznikov, and J. Weinman, “Pulse wave velocity in healthy subjects and in patients with various disease states,” Am. Heart J. 82(4), 448–457 (1971).
    [Crossref] [PubMed]
  27. B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (3)

2010 (1)

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

2009 (1)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

2008 (2)

2006 (1)

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).

2005 (1)

2004 (2)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

1999 (1)

D. Ratner, C. O. Thomas, and D. Bickers, “The uses of digital photography in dermatology,” J. Am. Acad. Dermatol. 41(5), 749–756 (1999).
[Crossref] [PubMed]

1998 (1)

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

1997 (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

1996 (3)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
[Crossref]

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

1981 (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

1971 (1)

M. Eliakim, D. Sapoznikov, and J. Weinman, “Pulse wave velocity in healthy subjects and in patients with various disease states,” Am. Heart J. 82(4), 448–457 (1971).
[Crossref] [PubMed]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Angelo, J. P.

Arridge, S. R.

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

Bickers, D.

D. Ratner, C. O. Thomas, and D. Bickers, “The uses of digital photography in dermatology,” J. Am. Acad. Dermatol. 41(5), 749–756 (1999).
[Crossref] [PubMed]

Boas, D. A.

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Briers, J.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
[Crossref]

Buck, A.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

Burger, C.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Carp, S. A.

Chance, B.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Choe, R.

Choi, B.

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Corlu, A.

Cuccia, D. J.

Davis, M. A.

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

Dell, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

Duncan, D. D.

Dunn, A. K.

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Durduran, T.

Durkin, A. J.

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[Crossref] [PubMed]

S. D. Konecky, T. Rice, A. J. Durkin, and B. J. Tromberg, “Imaging scattering orientation with spatial frequency domain imaging,” J. Biomed. Opt. 16(12), 126001 (2011).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[Crossref] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

Eliakim, M.

M. Eliakim, D. Sapoznikov, and J. Weinman, “Pulse wave velocity in healthy subjects and in patients with various disease states,” Am. Heart J. 82(4), 448–457 (1971).
[Crossref] [PubMed]

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Frangioni, J. V.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

Gioux, S.

M. van de Giessen, J. P. Angelo, and S. Gioux, “Real-time, profile-corrected single snapshot imaging of optical properties,” Biomed. Opt. Express 6(10), 4051–4062 (2015).
[Crossref] [PubMed]

J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Guizar-Iturbide, I.

Hamaoka, T.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Hillman, E. M.

Imholz, B. P.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Iwane, H.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

Katsumura, T.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Kazmi, S. M.

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

Kirkpatrick, S. J.

Konecky, S. D.

Kurosawa, Y.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Lotfi, J.

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).

Martínez-Niconoff, G.

Mazhar, A.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Murase, N.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Nadeau, K. P.

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[Crossref] [PubMed]

Nelson, J. S.

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

Nishio, S.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Osada, T.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Owen, C.

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Ramirez-San-Juan, J. C.

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[Crossref] [PubMed]

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).

Ramos-García, R.

Ratner, D.

D. Ratner, C. O. Thomas, and D. Bickers, “The uses of digital photography in dermatology,” J. Am. Acad. Dermatol. 41(5), 749–756 (1999).
[Crossref] [PubMed]

Rice, T.

S. D. Konecky, T. Rice, A. J. Durkin, and B. J. Tromberg, “Imaging scattering orientation with spatial frequency domain imaging,” J. Biomed. Opt. 16(12), 126001 (2011).
[Crossref] [PubMed]

Rice, T. B.

Sapoznikov, D.

M. Eliakim, D. Sapoznikov, and J. Weinman, “Pulse wave velocity in healthy subjects and in patients with various disease states,” Am. Heart J. 82(4), 448–457 (1971).
[Crossref] [PubMed]

Scheffold, F.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

Schweiger, M.

Shimomitsu, T.

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

Thomas, C. O.

D. Ratner, C. O. Thomas, and D. Bickers, “The uses of digital photography in dermatology,” J. Am. Acad. Dermatol. 41(5), 749–756 (1999).
[Crossref] [PubMed]

Tromberg, B. J.

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
[Crossref] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[Crossref] [PubMed]

S. D. Konecky, T. Rice, A. J. Durkin, and B. J. Tromberg, “Imaging scattering orientation with spatial frequency domain imaging,” J. Biomed. Opt. 16(12), 126001 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

van de Giessen, M.

van Montfrans, G. A.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Vervandier, J.

von Schulthess, G. K.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

Weber, B.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Weinman, J.

M. Eliakim, D. Sapoznikov, and J. Weinman, “Pulse wave velocity in healthy subjects and in patients with various disease states,” Am. Heart J. 82(4), 448–457 (1971).
[Crossref] [PubMed]

Wesseling, K. H.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Wieling, W.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Wyss, M. T.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

Yodh, A. G.

Am. Heart J. (1)

M. Eliakim, D. Sapoznikov, and J. Weinman, “Pulse wave velocity in healthy subjects and in patients with various disease states,” Am. Heart J. 82(4), 448–457 (1971).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Cardiovasc. Res. (1)

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Eur. J. Neurosci. (1)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[Crossref] [PubMed]

J. Am. Acad. Dermatol. (1)

D. Ratner, C. O. Thomas, and D. Bickers, “The uses of digital photography in dermatology,” J. Am. Acad. Dermatol. 41(5), 749–756 (1999).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

T. Hamaoka, H. Iwane, T. Shimomitsu, T. Katsumura, N. Murase, S. Nishio, T. Osada, Y. Kurosawa, and B. Chance, “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” J. Appl. Physiol. 81(3), 1410–1417 (1996).
[PubMed]

J. Biomed. Opt. (7)

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[Crossref] [PubMed]

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15, 061716 (2010).

S. D. Konecky, T. Rice, A. J. Durkin, and B. J. Tromberg, “Imaging scattering orientation with spatial frequency domain imaging,” J. Biomed. Opt. 16(12), 126001 (2011).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 661–668 (1997).
[Crossref] [PubMed]

Other (1)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Biomedical Optics (BiOS)2008(International Society for Optics and Photonics2008), pp. 687007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. Light from a coherent source is spatially modulated and projected onto a diffuse medium. Remitted light from the sample is collected using a high-speed sCMOS camera.
Fig. 2
Fig. 2 Data flow. Left: Optical properties are calculated from a single raw image of data. The image is Fourier transformed line-by-line then window-filtered in frequency space. Component spectra are inverse-transformed and calibrated to phantom data to produce DC and AC images. Calibrated data are used to calculate µa and µs’. Right: Speckle flow index is calculated from the same raw image. A sliding window filter is used to compute the spatial standard deviation and mean intensity. The ratio of these quantities produces the speckle contrast (K) image. Speckle Flow Index (SFI) is then calculated from speckle contrast according to the equation above where T is the integration time.
Fig. 3
Fig. 3 Bulk optical property measurements. Left: comparison of bulk absorption reconstruction using standard three-phase SFDI and single snapshot cSFDI. Top two images show absorption maps reconstructed from one phantom using SFDI and single snapshot cSFDI. The bottom plot shows a comparison of bulk absorption between SFDI and single snapshot cSFDI calculated from seven different phantoms. Right: comparison of bulk reduced-scattering reconstruction. The top two images show reduced-scattering maps reconstructed using SFDI and single snapshot cSFDI. The plot at the bottom shows a comparison of bulk reduced-scattering between SFDI and single snapshot cSFDI calculated from five different phantoms.
Fig. 4
Fig. 4 SFI measurements. A) SFI images obtained from a flow phantom using spatially modulated AC projections (top) and planar DC projections (bottom). B) SFI values averaged over the region of flow as the speed of the moving liquid is increased from 1 to 5 mm/s in 1 mm/s increments. The graph shows SFI from AC illumination plotted against SFI from DC illumination at each flow speed.
Fig. 5
Fig. 5 In vivo forearm reactive hyperemia experiment. Top from left to right: spatial maps of absorption, reduced-scattering, and speckle flow index. Bottom from left to right: time-series data of absorption, reduced-scattering and speckle flow index from the two regions of interest in the images. A 660 nm laser diode was used in this experiment.
Fig. 6
Fig. 6 Heartbeat data from in vivo experiments a) Image of the subject’s forearm with overlaid SFI map. b) Time series SFI data from blue and black regions of interest during the cuff-occlusion-release protocol. The light-brown shaded box corresponds to the occlusion portion of the experiment, while the light-green shaded box corresponds to the release of the occlusion. c) Fourier transforms from the occlusion (light-brown) and the release (light-green). d) 30 second zoomed-in intervals taken from the occlusion and release portions of the data. The green shaded box corresponds to the green rectangle with the asterisk in Fig. 6(b). The brown shaded box is a zoomed in interval from the brown rectangle with the asterisk in Fig. 6(b). e) An even closer look at the signal during the release. These data correspond to the green rectangle with two asterisks (**) in Fig. 6(d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

AC(x,y)= [ I 0° I 120° ] 2 + [ I 120° I 240° ] 2 + [ I 240° I 0° ] 2

Metrics