Abstract

In rodent olfactory bulb (OB), optical intrinsic signal imaging (OISI) is commonly used to investigate functional maps to odorant stimulations. However, in such studies, the spatial resolution in depth direction (z-axis) is lost because of the integration of light from different depths. To solve this problem, we propose functional optical coherence tomography (fOCT) with periodic stimulation and continuous recording. In fOCT experiments of in vivo rat OB, propionic acid and m-cresol were used as odor stimulus presentations. Such a periodic stimulation enabled us to detect the specific odor-responses from highly scattering brain tissue. Swept source OCT operating at a wavelength of 1334 nm and a frequency of 20 kHz, was employed with theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm, respectively. We succeeded in visualizing 2D cross sectional fOCT map across the neural layer structure of OCT in vivo. The detected fOCT signals corresponded to a few glomeruli of the medial and lateral parts of dorsal OB. We also obtained 3D fOCT maps, which upon integration across z-axis agreed well with OISI results. We expect such an approach to open a window for investigating and possibly addressing toward inter/intra-layer connections at high resolutions in the future.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy

Hideyuki Watanabe, Uma Maheswari Rajagopalan, Yu Nakamichi, Kei M. Igarashi, Violeta Dimitrova Madjarova, Hirofumi Kadono, and Manabu Tanifuji
Biomed. Opt. Express 2(8) 2279-2287 (2011)

Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo

Hideyuki Watanabe, Uma Maheswari Rajagopalan, Yu Nakamichi, Kei M. Igarashi, Hirofumi Kadono, and Manabu Tanifuji
Biomed. Opt. Express 2(11) 3129-3134 (2011)

Functional optical coherence tomography for detecting neural activity through scattering changes

Mariya Lazebnik, Daniel L. Marks, Kurt Potgieter, Rhanor Gillette, and Stephen A. Boppart
Opt. Lett. 28(14) 1218-1220 (2003)

References

  • View by:
  • |
  • |
  • |

  1. B. D. Rubin and L. C. Katz, “Optical imaging of odorant representations in the mammalian olfactory bulb,” Neuron 23(3), 499–511 (1999).
    [Crossref] [PubMed]
  2. N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
    [Crossref] [PubMed]
  3. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
    [Crossref] [PubMed]
  4. T. Bonhoeffer and A. Grinvald, “Optical Imaging Based on Intrinsic Signals,” in Brain Mapping The Methods, A. W. Toga, J. C. Mazziotta eds. (Academic Press, 1996), pp. 55–97.
  5. F. Pain, B. L’heureux, and H. Gurden, “Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli,” Cell. Mol. Life Sci. 68(16), 2689–2709 (2011).
    [Crossref] [PubMed]
  6. M. Meister and T. Bonhoeffer, “Tuning and topography in an odor map on the rat olfactory bulb,” J. Neurosci. 21(4), 1351–1360 (2001).
    [PubMed]
  7. L. Belluscio and L. C. Katz, “Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs,” J. Neurosci. 21(6), 2113–2122 (2001).
    [PubMed]
  8. M. Luo and L. C. Katz, “Response correlation maps of neurons in the mammalian olfactory bulb,” Neuron 32(6), 1165–1179 (2001).
    [Crossref] [PubMed]
  9. K. Mori, Y. K. Takahashi, K. M. Igarashi, and M. Yamaguchi, “Maps of odorant molecular features in the Mammalian olfactory bulb,” Physiol. Rev. 86(2), 409–433 (2006).
    [Crossref] [PubMed]
  10. R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
    [Crossref] [PubMed]
  11. S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
    [Crossref] [PubMed]
  12. I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
    [Crossref] [PubMed]
  13. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
    [Crossref] [PubMed]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  15. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  16. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
    [Crossref] [PubMed]
  17. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [Crossref] [PubMed]
  18. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref] [PubMed]
  19. K. Tsunoda, K. Fujinami, and Y. Miyake, “Selective abnormality of cone outer segment tip line in acute zonal occult outer retinopathy as observed by spectral-domain optical coherence tomography,” Arch. Ophthalmol. 129(8), 1099–1101 (2011).
    [Crossref] [PubMed]
  20. Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
    [Crossref] [PubMed]
  21. R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
    [Crossref]
  22. U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
    [Crossref] [PubMed]
  23. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
    [Crossref] [PubMed]
  24. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [Crossref] [PubMed]
  25. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett. 34(20), 3086–3088 (2009).
    [Crossref] [PubMed]
  26. A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
    [Crossref] [PubMed]
  27. V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
    [Crossref] [PubMed]
  28. V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
    [Crossref] [PubMed]
  29. C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
    [Crossref] [PubMed]
  30. L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
    [Crossref] [PubMed]
  31. P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
    [Crossref] [PubMed]
  32. S. A. Engel, G. H. Glover, and B. A. Wandell, “Retinotopic organization in human visual cortex and the spatial precision of functional MRI,” Cereb. Cortex 7(2), 181–192 (1997).
    [Crossref] [PubMed]
  33. Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, and M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci. 270.01 (2011), http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=d023089b-a64b-4aa9-b3cb-6129bde54e45&cKey=09b7566c-c153-4692-8113-1a04e1af0b1d&mKey=%7b8334BE29-8911-4991-8C31-32B32DD5E6C8%7d
  34. H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, V. D. Madjarova, H. Kadono, and M. Tanifuji, “In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy,” Biomed. Opt. Express 2(8), 2279–2287 (2011).
    [Crossref] [PubMed]
  35. H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, H. Kadono, and M. Tanifuji, “Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo,” Biomed. Opt. Express 2(11), 3129–3134 (2011).
    [Crossref] [PubMed]
  36. J. Binding, J. Ben Arous, J. F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19(6), 4833–4847 (2011).
    [Crossref] [PubMed]
  37. Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt. 17(5), 050503 (2012).
    [Crossref] [PubMed]
  38. D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
    [Crossref] [PubMed]

2013 (1)

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt. 17(5), 050503 (2012).
[Crossref] [PubMed]

D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
[Crossref] [PubMed]

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (1)

2009 (2)

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett. 34(20), 3086–3088 (2009).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (2)

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref] [PubMed]

2004 (2)

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
[Crossref] [PubMed]

2003 (3)

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[Crossref] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

2002 (3)

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
[Crossref] [PubMed]

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

2001 (3)

M. Meister and T. Bonhoeffer, “Tuning and topography in an odor map on the rat olfactory bulb,” J. Neurosci. 21(4), 1351–1360 (2001).
[PubMed]

L. Belluscio and L. C. Katz, “Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs,” J. Neurosci. 21(6), 2113–2122 (2001).
[PubMed]

M. Luo and L. C. Katz, “Response correlation maps of neurons in the mammalian olfactory bulb,” Neuron 32(6), 1165–1179 (2001).
[Crossref] [PubMed]

2000 (1)

N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
[Crossref] [PubMed]

1999 (2)

B. D. Rubin and L. C. Katz, “Optical imaging of odorant representations in the mammalian olfactory bulb,” Neuron 23(3), 499–511 (1999).
[Crossref] [PubMed]

C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
[Crossref] [PubMed]

1998 (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

1997 (1)

S. A. Engel, G. H. Glover, and B. A. Wandell, “Retinotopic organization in human visual cortex and the spatial precision of functional MRI,” Cereb. Cortex 7(2), 181–192 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1986 (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Akiba, M.

Belluscio, L.

L. Belluscio and L. C. Katz, “Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs,” J. Neurosci. 21(6), 2113–2122 (2001).
[PubMed]

Ben Arous, J.

Beroud, J.

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Bhaukaurally, K.

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Binding, J.

Boas, D. A.

Boccara, C.

Bonhoeffer, T.

M. Meister and T. Bonhoeffer, “Tuning and topography in an odor map on the rat olfactory bulb,” J. Neurosci. 21(4), 1351–1360 (2001).
[PubMed]

Boppart, S. A.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Bouma, B. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Bourdieu, L.

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Brovelli, A.

C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
[Crossref] [PubMed]

Carleton, A.

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Cheng, K.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Choi, D. H.

Chong, C.

Chumillas, J.

C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
[Crossref] [PubMed]

Costagli, M.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Engel, S. A.

S. A. Engel, G. H. Glover, and B. A. Wandell, “Retinotopic organization in human visual cortex and the spatial precision of functional MRI,” Cereb. Cortex 7(2), 181–192 (1997).
[Crossref] [PubMed]

ffytche, D. H.

C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Flusberg, B. A.

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Fries, P.

L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
[Crossref] [PubMed]

Frostig, R. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Fujimoto, J. G.

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett. 34(20), 3086–3088 (2009).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujinami, K.

K. Tsunoda, K. Fujinami, and Y. Miyake, “Selective abnormality of cone outer segment tip line in acute zonal occult outer retinopathy as observed by spectral-domain optical coherence tomography,” Arch. Ophthalmol. 129(8), 1099–1101 (2011).
[Crossref] [PubMed]

Gardner, J. L.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Gigan, S.

Gilbert, C. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Glover, G. H.

S. A. Engel, G. H. Glover, and B. A. Wandell, “Retinotopic organization in human visual cortex and the spatial precision of functional MRI,” Cereb. Cortex 7(2), 181–192 (1997).
[Crossref] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grinvald, A.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Gschwend, O.

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Gurden, H.

F. Pain, B. L’heureux, and H. Gurden, “Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli,” Cell. Mol. Life Sci. 68(16), 2689–2709 (2011).
[Crossref] [PubMed]

Guy, C. N.

C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
[Crossref] [PubMed]

Hangai, M.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hiro-Oka, H.

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hyder, F.

I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
[Crossref] [PubMed]

Igarashi, K. M.

Ikeda, H. O.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Itoh, M.

Jung, J. C.

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Kadono, H.

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, H. Kadono, and M. Tanifuji, “Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo,” Biomed. Opt. Express 2(11), 3129–3134 (2011).
[Crossref] [PubMed]

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, V. D. Madjarova, H. Kadono, and M. Tanifuji, “In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy,” Biomed. Opt. Express 2(8), 2279–2287 (2011).
[Crossref] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Kakizuka, A.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Kalatsky, V. A.

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[Crossref] [PubMed]

Kamino, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Katz, L. C.

M. Luo and L. C. Katz, “Response correlation maps of neurons in the mammalian olfactory bulb,” Neuron 32(6), 1165–1179 (2001).
[Crossref] [PubMed]

L. Belluscio and L. C. Katz, “Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs,” J. Neurosci. 21(6), 2113–2122 (2001).
[PubMed]

B. D. Rubin and L. C. Katz, “Optical imaging of odorant representations in the mammalian olfactory bulb,” Neuron 23(3), 499–511 (1999).
[Crossref] [PubMed]

Kerskens, C. M.

L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
[Crossref] [PubMed]

Kida, I.

I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
[Crossref] [PubMed]

Kohda, H.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Kondo, M.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

L’heureux, B.

F. Pain, B. L’heureux, and H. Gurden, “Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli,” Cell. Mol. Life Sci. 68(16), 2689–2709 (2011).
[Crossref] [PubMed]

Léger, J. F.

Lieke, E.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Luo, M.

M. Luo and L. C. Katz, “Response correlation maps of neurons in the mammalian olfactory bulb,” Neuron 32(6), 1165–1179 (2001).
[Crossref] [PubMed]

Madjarova, V. D.

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Maheswaria, R. U.

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Makita, S.

Mehta, A. D.

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Meister, M.

M. Meister and T. Bonhoeffer, “Tuning and topography in an odor map on the rat olfactory bulb,” J. Neurosci. 21(4), 1351–1360 (2001).
[PubMed]

Merzenich, M. M.

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

Miyakawa, N.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Miyake, Y.

K. Tsunoda, K. Fujinami, and Y. Miyake, “Selective abnormality of cone outer segment tip line in acute zonal occult outer retinopathy as observed by spectral-domain optical coherence tomography,” Arch. Ophthalmol. 129(8), 1099–1101 (2011).
[Crossref] [PubMed]

Mochida, H.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Momose-Sato, Y.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Mori, K.

K. Mori, Y. K. Takahashi, K. M. Igarashi, and M. Yamaguchi, “Maps of odorant molecular features in the Mammalian olfactory bulb,” Physiol. Rev. 86(2), 409–433 (2006).
[Crossref] [PubMed]

N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
[Crossref] [PubMed]

Morosawa, A.

Muraoka, Y.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Nakamichi, Y.

Nakano, N.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Norris, D. G.

L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
[Crossref] [PubMed]

Ohbayashi, K.

Okamoto-Furuta, K.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Pain, F.

F. Pain, B. L’heureux, and H. Gurden, “Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli,” Cell. Mol. Life Sci. 68(16), 2689–2709 (2011).
[Crossref] [PubMed]

Parkes, L. M.

L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
[Crossref] [PubMed]

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Polley, D. B.

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rajagopalan, U. M.

Rubin, B. D.

B. D. Rubin and L. C. Katz, “Optical imaging of odorant representations in the mammalian olfactory bulb,” Neuron 23(3), 499–511 (1999).
[Crossref] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Ruvinskaya, S.

Sakadzic, S.

Sakai, T.

Sasaki, S.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Sato, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Schnitzer, M. J.

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Schreiner, C. E.

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shimizu, K.

Shinomiya, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Shulman, R. G.

I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
[Crossref] [PubMed]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stryker, M. P.

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[Crossref] [PubMed]

Sun, P.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Takahashi, Y. K.

K. Mori, Y. K. Takahashi, K. M. Igarashi, and M. Yamaguchi, “Maps of odorant molecular features in the Mammalian olfactory bulb,” Physiol. Rev. 86(2), 409–433 (2006).
[Crossref] [PubMed]

N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
[Crossref] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Tanaka, K.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Tanifuji, M.

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, H. Kadono, and M. Tanifuji, “Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo,” Biomed. Opt. Express 2(11), 3129–3134 (2011).
[Crossref] [PubMed]

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, V. D. Madjarova, H. Kadono, and M. Tanifuji, “In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy,” Biomed. Opt. Express 2(8), 2279–2287 (2011).
[Crossref] [PubMed]

U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
[Crossref] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
[Crossref] [PubMed]

Terasaki, H.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Toda, Y.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Tsunoda, K.

K. Tsunoda, K. Fujinami, and Y. Miyake, “Selective abnormality of cone outer segment tip line in acute zonal occult outer retinopathy as observed by spectral-domain optical coherence tomography,” Arch. Ophthalmol. 129(8), 1099–1101 (2011).
[Crossref] [PubMed]

Uchida, N.

N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
[Crossref] [PubMed]

Ueno, K.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Vincis, R.

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Waggoner, R. A.

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

Wandell, B. A.

S. A. Engel, G. H. Glover, and B. A. Wandell, “Retinotopic organization in human visual cortex and the spatial precision of functional MRI,” Cereb. Cortex 7(2), 181–192 (1997).
[Crossref] [PubMed]

Watanabe, H.

Watanabe, Y.

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt. 17(5), 050503 (2012).
[Crossref] [PubMed]

Wiesel, T. N.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Wojtkowski, M.

Wu, W.

Xu, F.

I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
[Crossref] [PubMed]

Yamaguchi, M.

K. Mori, Y. K. Takahashi, K. M. Igarashi, and M. Yamaguchi, “Maps of odorant molecular features in the Mammalian olfactory bulb,” Physiol. Rev. 86(2), 409–433 (2006).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

Yazawa, I.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

Yoshimura, N.

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

K. Tsunoda, K. Fujinami, and Y. Miyake, “Selective abnormality of cone outer segment tip line in acute zonal occult outer retinopathy as observed by spectral-domain optical coherence tomography,” Arch. Ophthalmol. 129(8), 1099–1101 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Cell. Mol. Life Sci. (1)

F. Pain, B. L’heureux, and H. Gurden, “Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli,” Cell. Mol. Life Sci. 68(16), 2689–2709 (2011).
[Crossref] [PubMed]

Cereb. Cortex (2)

P. Sun, J. L. Gardner, M. Costagli, K. Ueno, R. A. Waggoner, K. Tanaka, and K. Cheng, “Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm,” Cereb. Cortex 23(7), 1618–1629 (2013).
[Crossref] [PubMed]

S. A. Engel, G. H. Glover, and B. A. Wandell, “Retinotopic organization in human visual cortex and the spatial precision of functional MRI,” Cereb. Cortex 7(2), 181–192 (1997).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt. 17(5), 050503 (2012).
[Crossref] [PubMed]

J. Neurosci. (2)

M. Meister and T. Bonhoeffer, “Tuning and topography in an odor map on the rat olfactory bulb,” J. Neurosci. 21(4), 1351–1360 (2001).
[PubMed]

L. Belluscio and L. C. Katz, “Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs,” J. Neurosci. 21(6), 2113–2122 (2001).
[PubMed]

J. Neurosci. Methods (2)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

I. Kida, F. Xu, R. G. Shulman, and F. Hyder, “Mapping at glomerular resolution: fMRI of rat olfactory bulb,” Magn. Reson. Med. 48(3), 570–576 (2002).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

Nat. Med. (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Nat. Neurosci. (2)

N. Uchida, Y. K. Takahashi, M. Tanifuji, and K. Mori, “Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features,” Nat. Neurosci. 3(10), 1035–1043 (2000).
[Crossref] [PubMed]

R. Vincis, O. Gschwend, K. Bhaukaurally, J. Beroud, and A. Carleton, “Dense representation of natural odorants in the mouse olfactory bulb,” Nat. Neurosci. 15(4), 537–539 (2012).
[Crossref] [PubMed]

Nature (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[Crossref] [PubMed]

Neuroimage (3)

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[Crossref] [PubMed]

C. N. Guy, D. H. ffytche, A. Brovelli, and J. Chumillas, “fMRI and EEG responses to periodic visual stimulation,” Neuroimage 10(2), 125–148 (1999).
[Crossref] [PubMed]

L. M. Parkes, P. Fries, C. M. Kerskens, and D. G. Norris, “Reduced BOLD response to periodic visual stimulation,” Neuroimage 21(1), 236–243 (2004).
[Crossref] [PubMed]

Neuron (3)

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[Crossref] [PubMed]

M. Luo and L. C. Katz, “Response correlation maps of neurons in the mammalian olfactory bulb,” Neuron 32(6), 1165–1179 (2001).
[Crossref] [PubMed]

B. D. Rubin and L. C. Katz, “Optical imaging of odorant representations in the mammalian olfactory bulb,” Neuron 23(3), 499–511 (1999).
[Crossref] [PubMed]

Opt. Commun. (1)

R. U. Maheswaria, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Physiol. Rev. (1)

K. Mori, Y. K. Takahashi, K. M. Igarashi, and M. Yamaguchi, “Maps of odorant molecular features in the Mammalian olfactory bulb,” Physiol. Rev. 86(2), 409–433 (2006).
[Crossref] [PubMed]

PLoS One (1)

Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PLoS One 7(4), e36135 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. A. Kalatsky, D. B. Polley, M. M. Merzenich, C. E. Schreiner, and M. P. Stryker, “Fine functional organization of auditory cortex revealed by Fourier optical imaging,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13325–13330 (2005).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

T. Bonhoeffer and A. Grinvald, “Optical Imaging Based on Intrinsic Signals,” in Brain Mapping The Methods, A. W. Toga, J. C. Mazziotta eds. (Academic Press, 1996), pp. 55–97.

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, and M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci. 270.01 (2011), http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=d023089b-a64b-4aa9-b3cb-6129bde54e45&cKey=09b7566c-c153-4692-8113-1a04e1af0b1d&mKey=%7b8334BE29-8911-4991-8C31-32B32DD5E6C8%7d

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic view of the fOCT experimental system. The SS-OCT system is shown with magenta lines, and olfactometer is shown with green dash lines. The olfactometer sent odorant molecules to right nasal cavity of rat by air pump. Duration of stimulus presentation was controlled by solenoid valve. The airflow of stimulation was controlled by flow meters (left and right: 50-100 ml/min, center: 1900-2000 ml/min). The olfactometer sent stimulus ID to SS-OCT system using UDP network protocol. SS-OCT was operated at a wavelength of 1334 nm and a frequency of 20 kHz. The 1x2 fiber coupler with a coupling ratio 95/5 near the light source splits the light from the source respectively to sample arm (95%) and reference arm (5%). The 2x2 fiber coupler with a coupling ratio of 50/50 was used to combine reflected lights from the sample and the reference arms and this provides equally divided interference signal to be detected by the balanced receiver. OCT lateral scanning was performed by the galvano scanners. The OCT system had theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm, respectively.

Fig. 2
Fig. 2

(a) A schematic of the temporal sequence of periodic stimulus presentation of 0.0167 Hz and expected responses of sinusoidal OCT components to the frequency of 0.0167 Hz. M-cresol was presented with 30 seconds delay to propionic acid. Duration of stimulus presentation was set as 10 seconds. (b) CCD image of right OB to OISI samples (c, d). (c) OISI map to propionic acid. (d) OISI map to m-cresol. Odor-evoked optical responses of OISI were identified in magenta and green regions. Scale bar, 500 μm. (e) Schematic image indicates OCT scanning area (red dotted lines) with the scan parameters. A, anterior; P, posterior; L, lateral; M, medial; D, dorsal; V, ventral.

Fig. 3
Fig. 3

Flowchart to obtain fOCT data.

Fig. 4
Fig. 4

(a) CCD image of OB surface. (b) Integrated OCT image across z-axis obtained at the same position of (a). (c) Cross sectional OCT image corresponded to blue dot line of (a) and (b), at periodic odor stimulus condition. Green arrows in 4(a-c) indicated the same blood vessel. (d) fOCT map having magnitude and phase information to periodic odor stimulation. Amplitude map (e) and phase map (f) to periodic odor stimulation. (g) Cross sectional OCT image corresponded to blue dot line of (a) and (b), under control experiment (no stimulus condition). (h) fOCT image under control experiment. Amplitude map (i) and phase map (j) under control experiment. Two spots indicated by the white arrows were detected functional signals in (d) and (h). The red arrows showed same position of the white arrows. A, anterior; P, posterior; L, lateral; M, medial; D, dorsal; V, ventral. Scale bar, 500 μm.

Fig. 5
Fig. 5

(a) CCD image of OB surface. (b) Integrated OCT image in z-axis. (c) Cross sectional OCT image corresponded to the blue dotted line of (a) and (b). (d) fOCT image to the periodic odor stimulation to the blue dot line of (a) and (b). (e) Magnified OCT image to white square of (c). (f) Magnified fOCT image to white square of (d). (g) Same OCT image to (e) and a few glomeruli were encircled by red dotted line. (h) Same fOCT image to (f) and a few glomeruli were encircled by red dotted line. (i) Overlaid image of using OCT image of (c) and fOCT image of (d). A, anterior; P, posterior; L, lateral; M, medial; D, dorsal; V, ventral. Scale bar, 500 μm.

Fig. 6
Fig. 6

(a) CCD image of OB surface. (b) Integrated OCT image in z-axis. (c) Cross sectional OCT image corresponded to the blue dotted line of (a) and (b). (d) fOCT image to the periodic odor stimulation to the blue dot line of (a) and (b). (e) Magnified OCT image to white square of (c). (f) Magnified fOCT image to white square of (c). fOCT signal was also detected at the vessel by the white arrow. (g) Same OCT image of (e) and a few glomeruli were encircled by red dotted line. (h) Same fOCT image of (f) and a few glomeruli were encircled by red dotted line. (i) Overlaid image of using OCT image of (c) and fOCT image of (d). A, anterior; P, posterior; L, lateral; M, medial; D, dorsal; V, ventral. Scale bar, 500 μm.

Fig. 7
Fig. 7

(a) 3D fOCT image of OB (rat # 1). (b-d) Different views of 3D fOCT image (a) indicated by each white arrow in (a). (e) 3D fOCT image of another OB (rat # 2). (f-h) Different views of 3D fOCT image (e) indicated by each white arrow in (e). A, anterior; P, posterior; L, lateral; M, medial; D, dorsal; V, ventral.

Fig. 8
Fig. 8

Spatial relationship between fOCT map and conventional OISI map obtained from 2 OBs, with (a-d) of rat # 2, and (e-h) of rat # 1. (a, e) Integrated surface OCT images in z-axis. (b, f) Integrated fOCT images of (a, e). (c, g) CCD images of OB surface. (d, h) OISI maps of (c, g) with pseudo colors (green: m-cresol and magenta: propionic acid). The encircled local regions of fOCT maps pointed by white arrow could have better spatial resolution than the same regions of OISI maps. A, anterior; P, posterior; L, lateral; M, medial. Scale bar, 500 μm.

Fig. 9
Fig. 9

(a) Cross sectional fOCT image obtained with periodic stimulation (rat #0). (b-e) Temporal fOCT signal (black line) and stimulus presentation period (each color bar indicates 10 sec) and dotted lines (detected periodic fOCT signal) were displayed. (b) Temporal fOCT signal to propionic acid. The target fOCT signal was pointed by the magenta color arrow in (a). (c) Temporal fOCT signal to m-cresol. The target fOCT signal was pointed by the green color arrow in (a). (d) and (e) were magnified one cycle images of (b) and (e) at a certain trial of one period of 60 sec. L, lateral; M, medial; D, dorsal; V, ventral. Scale bar, 500 μm.

Metrics