Abstract

Laser speckle contrast imaging has become a ubiquitous tool for imaging blood flow in a variety of tissues. However, due to its widefield imaging nature, the measured speckle contrast is a depth integrated quantity and interpretation of baseline values and the depth dependent sensitivity of those values to changes in underlying flow has not been thoroughly evaluated. Using dynamic light scattering Monte Carlo simulations, the sensitivity of the autocorrelation function and speckle contrast to flow changes in the cerebral cortex was extensively examined. These simulations demonstrate that the sensitivity of the inverse autocorrelation time, 1τc, varies across the field of view: directly over surface vessels 1τc is strongly localized to the single vessel, while parenchymal ROIs have a larger sensitivity to flow changes at depths up to 500 μm into the tissue and up to 200 μm lateral to the ROI. It is also shown that utilizing the commonly used models the relate 1τc to flow resulted in nearly the same sensitivity to the underlying flow, but fail to accurately relate speckle contrast values to absolute 1τc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flux or speed? Examining speckle contrast imaging of vascular flows

S. M. Shams Kazmi, Ehssan Faraji, Mitchell A. Davis, Yu-Yen Huang, Xiaojing J. Zhang, and Andrew K. Dunn
Biomed. Opt. Express 6(7) 2588-2608 (2015)

Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography

Zhongchi Luo, Zhijia Yuan, Melissa Tully, Yingtian Pan, and Congwu Du
Appl. Opt. 48(10) D247-D255 (2009)

Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing

Rui Shi, Min Chen, Valery V. Tuchin, and Dan Zhu
Biomed. Opt. Express 6(6) 1977-1989 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
    [Crossref] [PubMed]
  2. S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
    [Crossref] [PubMed]
  3. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
    [Crossref] [PubMed]
  4. N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
    [Crossref] [PubMed]
  5. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
    [Crossref]
  6. L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
    [Crossref]
  7. R. Bonner and R. Nossal, “Model of laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [Crossref] [PubMed]
  8. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
    [Crossref]
  9. D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
    [Crossref] [PubMed]
  10. S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6, 2588–2608 (2015).
    [Crossref] [PubMed]
  11. S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2, 2047–2054 (2011).
    [Crossref] [PubMed]
  12. M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 086001 (2014).
    [Crossref] [PubMed]
  13. M. A. Davis and A. K. Dunn, “Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media,” Opt. Express 23, 17145–17155 (2015).
    [Crossref] [PubMed]
  14. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  15. J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [Crossref] [PubMed]
  16. P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
    [Crossref]
  17. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9 (2008).
    [Crossref]
  18. J. Ramirez-San-Juan, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
    [Crossref] [PubMed]
  19. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
    [Crossref] [PubMed]
  20. D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage 40, 1116–1129 (2008).
    [Crossref] [PubMed]
  21. J.-Y. Lee, M.-P. Lu, K.-Y. Lin, and S.-H. Huang, “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Appl. Opt. 51, 1095–1100 (2012).
    [Crossref] [PubMed]
  22. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
    [Crossref] [PubMed]
  23. R. Bandyopadhyay and A. Gittings, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
    [Crossref]
  24. L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
    [Crossref] [PubMed]
  25. L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
    [Crossref] [PubMed]
  26. P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
    [Crossref] [PubMed]
  27. D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
    [Crossref] [PubMed]
  28. P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).
  29. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010).
    [Crossref]
  30. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46, 1742–1753 (2007).
    [Crossref] [PubMed]
  31. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
    [Crossref] [PubMed]
  32. S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage 54, 2840–2853 (2011).
    [Crossref]
  33. A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
    [Crossref] [PubMed]
  34. H. H. Lipowsky, “Microvascular rheology and hemodynamics,” Microcirculation 12, 5–15 (2005).
    [Crossref] [PubMed]
  35. T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
    [Crossref] [PubMed]
  36. S. M. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5, 2157–2171 (2014).
    [Crossref] [PubMed]

2015 (4)

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6, 2588–2608 (2015).
[Crossref] [PubMed]

M. A. Davis and A. K. Dunn, “Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media,” Opt. Express 23, 17145–17155 (2015).
[Crossref] [PubMed]

2014 (3)

S. M. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5, 2157–2171 (2014).
[Crossref] [PubMed]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 086001 (2014).
[Crossref] [PubMed]

2013 (2)

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

2012 (2)

J.-Y. Lee, M.-P. Lu, K.-Y. Lin, and S.-H. Huang, “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Appl. Opt. 51, 1095–1100 (2012).
[Crossref] [PubMed]

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

2011 (3)

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2, 2047–2054 (2011).
[Crossref] [PubMed]

S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage 54, 2840–2853 (2011).
[Crossref]

2010 (3)

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
[Crossref] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010).
[Crossref]

2009 (2)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (1)

2005 (2)

H. H. Lipowsky, “Microvascular rheology and hemodynamics,” Microcirculation 12, 5–15 (2005).
[Crossref] [PubMed]

R. Bandyopadhyay and A. Gittings, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[Crossref]

2003 (1)

2002 (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

1999 (1)

1997 (1)

1996 (1)

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

1990 (1)

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
[Crossref] [PubMed]

1988 (1)

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

1981 (2)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

R. Bonner and R. Nossal, “Model of laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
[Crossref] [PubMed]

Andermann, M. L.

Armitage, G. A.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
[Crossref] [PubMed]

Balial, S.

Bandyopadhyay, R.

R. Bandyopadhyay and A. Gittings, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[Crossref]

Bharioke, A.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Blinder, P.

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Boas, D.

D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage 40, 1116–1129 (2008).
[Crossref] [PubMed]

Boas, D. A.

Bock, D. D.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Bolay, H.

Bonner, R.

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Briers, J.

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Briggman, K. L.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Carp, S. A.

Cassot, F.

S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage 54, 2840–2853 (2011).
[Crossref]

Chaikin, P.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Chklovskii, D. B.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Chowdhury, S.

Cohen-Adad, J.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

Cornelius, N. R.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Dale, A.

D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage 40, 1116–1129 (2008).
[Crossref] [PubMed]

Dale, A. M.

Davis, M. A.

S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6, 2588–2608 (2015).
[Crossref] [PubMed]

M. A. Davis and A. K. Dunn, “Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media,” Opt. Express 23, 17145–17155 (2015).
[Crossref] [PubMed]

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 086001 (2014).
[Crossref] [PubMed]

S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
[Crossref] [PubMed]

Denk, W.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Devor, A.

Doerschuk, P. C.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Dreier, J. P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
[Crossref] [PubMed]

Drew, P. J.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9 (2008).
[Crossref]

Dunn, A. K.

M. A. Davis and A. K. Dunn, “Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media,” Opt. Express 23, 17145–17155 (2015).
[Crossref] [PubMed]

S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6, 2588–2608 (2015).
[Crossref] [PubMed]

S. M. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5, 2157–2171 (2014).
[Crossref] [PubMed]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 086001 (2014).
[Crossref] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[Crossref] [PubMed]

S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
[Crossref] [PubMed]

Durian, D.

Evans, K. C.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

Fang, Q.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

Faraji, E.

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Fox, D. J.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

Franceschini, M.-A.

Friebel, M.

Friedman, B.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Gaehtgens, P.

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
[Crossref] [PubMed]

Gagnon, L.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

Gittings, A.

R. Bandyopadhyay and A. Gittings, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[Crossref]

Gopal, A.

Gross, J. F.

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
[Crossref] [PubMed]

Hecht, N.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
[Crossref] [PubMed]

Helfmann, J.

Helmstaedter, M.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Herbolzheimer, E.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Huang, S.-H.

Huang, Y.-Y.

Huppert, T.

D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage 40, 1116–1129 (2008).
[Crossref] [PubMed]

Jones, S.

D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage 40, 1116–1129 (2008).
[Crossref] [PubMed]

Karten, H. J.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Kaufhold, J. P.

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Kazmi, S. M. S.

S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6, 2588–2608 (2015).
[Crossref] [PubMed]

S. M. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5, 2157–2171 (2014).
[Crossref] [PubMed]

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 086001 (2014).
[Crossref] [PubMed]

S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
[Crossref] [PubMed]

Kirkpatrick, S. J.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9 (2008).
[Crossref]

Kleinfeld, D.

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Knutsen, P. M.

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Lauwers, F.

S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage 54, 2840–2853 (2011).
[Crossref]

Lee, J.-Y.

Lee, W.-C. A.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Lefebvre, J.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

Lemieux, P.

Lesage, F.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

Lin, K.-Y.

Lipowsky, H. H.

H. H. Lipowsky, “Microvascular rheology and hemodynamics,” Microcirculation 12, 5–15 (2005).
[Crossref] [PubMed]

Lorthois, S.

S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage 54, 2840–2853 (2011).
[Crossref]

Lu, M.-P.

Lyden, P. D.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Mandeville, E. T.

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

Meinke, M.

Meyer, H. S.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Micheva, K. D.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Moskowitz, M. A.

Müller, G.

Musacchia, J. J.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

Nishimura, N.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Nossal, R.

Oberlaender, M.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Olbricht, W. L.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Parthasarathy, A. B.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
[Crossref] [PubMed]

Pine, D.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Pries, A. R.

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
[Crossref] [PubMed]

Prohaska, S.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Ramirez-San-Juan, J.

Reid, R. C.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Richards, L. M.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
[Crossref] [PubMed]

Robles, F. E.

Roche-Labarbe, N.

Sakadžic, S.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2, 2047–2054 (2011).
[Crossref] [PubMed]

Sakmann, B.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Santisakultarm, T. P.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Schafer, A. I.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Schaffer, C. B.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Schrandt, C. J.

S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
[Crossref] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Secomb, T. W.

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
[Crossref] [PubMed]

Shuaib, A.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
[Crossref] [PubMed]

Silver, R. T.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Smith, S. J.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Srinivasan, V. J.

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Suhl, H.

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

Takemura, S.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Todd, K. G.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
[Crossref] [PubMed]

Tom, W. J.

Towle, E. L.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Tsai, P. S.

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Vajkoczy, P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
[Crossref] [PubMed]

Wang, R. K.

Wax, A.

Weber, E. L.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

Webster, S.

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

Weitz, D.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Winship, I. R.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
[Crossref] [PubMed]

Woitzik, J.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
[Crossref] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Yaseen, M. A.

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

Yodh, A. G.

Yücel, M. A.

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

Zhang, X.

Zhang, X. J.

Am. J. Physiol. Heart Circ. Physiol. (1)

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302, H1367–H1377 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (4)

Circ. Res. (1)

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, “Blood flow in microvascular networks. Experiments and simulation,” Circ. Res. 67, 826–834 (1990).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 086001 (2014).
[Crossref] [PubMed]

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15, 066030 (2010).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30, 1432–1436 (2010).
[Crossref] [PubMed]

J. Neurosci. (3)

L. Gagnon, S. Sakadžić, F. Lesage, J. J. Musacchia, J. Lefebvre, Q. Fang, M. A. Yücel, K. C. Evans, E. T. Mandeville, J. Cohen-Adad, and et al., “Quantifying the microvascular origin of bold-fmri from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35, 3663–3675 (2015).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman, D. B. Chklovskii, W. Denk, M. Helmstaedter, J. P. Kaufhold, W.-C. A. Lee, H. S. Meyer, K. D. Micheva, M. Oberlaender, S. Prohaska, R. C. Reid, S. J. Smith, S. Takemura, P. S. Tsai, and B. Sakmann, “Large-scale automated histology in the pursuit of connectomes,” J. Neurosci. 31, 16125–16138 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Microcirculation (1)

H. H. Lipowsky, “Microvascular rheology and hemodynamics,” Microcirculation 12, 5–15 (2005).
[Crossref] [PubMed]

Nat. Neurosci. (1)

P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, and D. Kleinfeld, “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16889–897 (2013).

Neuroimage (2)

D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage 40, 1116–1129 (2008).
[Crossref] [PubMed]

S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage 54, 2840–2853 (2011).
[Crossref]

Neurophotonics (2)

L. Gagnon, S. Sakadžić, F. Lesage, E. T. Mandeville, Q. Fang, M. A. Yaseen, and D. A. Boas, “Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and doppler optical coherence tomography,” Neurophotonics 2, 015008 (2015).
[Crossref] [PubMed]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Neurosurg. Focus (1)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27, E11 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay and A. Gittings, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[Crossref]

Other (1)

S. M. S. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. in press (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Three dimensional rendering of mouse microvasculature acquired with two-photon fluorescence microscopy. (b) Segmentation of microvascular map into center-lines and radii, followed by reconstruction.
Fig. 2
Fig. 2 (a) Example microvascular geometry (725 μm×725 μm laterally, 670 μm deep). Colors represent different optical properties. (b) Three dimensional velocity data generated using a vascular anatomical network model.
Fig. 3
Fig. 3 Surface vessel ROI: (a) Simulated autocorrelation function compared with common forms of g1(t). (b) Histogram of the number of dynamic scattering events for each collected photon. (c) and (d) show the same data for a parenchyma ROI.
Fig. 4
Fig. 4 Three dimensional sensitivity function of surface vessel ROI (a) XY view (b) XZ view, and the parenchyma ROI (c) XY view (d) XZ view. (log scale)
Fig. 5
Fig. 5 The relationship between 1 τ c and particle velocity in a representative surface vessel and parenchyma ROIs. The slope represents the sensitivity function S(r) and the dotted line represents a sensitivity of 1. The plot in (a) shows targeted perturbation regions: the velocity in the entire surface vessel was adjusted for the surface vessel ROI, and a 25 μm radius cylinder was perturbed for the parenchyma ROI. In (b) the top 200 μm of the geometry was perturbed for both ROI.
Fig. 6
Fig. 6 Average sensitivity and standard error of (a) surface vessel ROI (N=14) and (b) parenchyma ROI (N=18) to changes in particle velocity in each 50 μm layer of the geometry. The bottom row shows the lateral sensitivity of (c) surface vessel ROI (N=14) and (d) parenchyma ROI (N=18) to changes in particle velocity in concentric cylinders with radii increasing by 25 μm.
Fig. 7
Fig. 7 The accuracy of typically assumed forms of g1(t). (a) is the same graph of sensitivity to flow perturbations shown in 5(a), but with matching 1 τ c values extracted using the models shown in Table 2. (b) shows the accuracy of the assumed forms of g1(t) at determining the true 1 τ c value in 32 ROIs.

Tables (2)

Tables Icon

Table 1 Forms of g1(τ)

Tables Icon

Table 2 Optical properties for microvasculature geometry

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

K s = σ s I
K s 2 = σ s 2 I 2 = 1 T I 2 0 T ( 1 t T ) C t ( t ) d t .
g 2 ( t ) = 1 + C t ( t ) I 2 .
g 2 ( t ) = 1 + β | g 1 ( t ) | 2
K s 2 = 1 T 0 T β | g 1 ( t ) | 2 ( 1 t T ) d t .
g 1 ( t ) = E ( 0 ) E * ( t ) = P ( Y ) exp ( j k 0 Y t ) d Y ,
Y = n ( ( k ^ f , n k ^ i , n ) V n ) .
s ( r ) = 1 τ c 1 τ c v ( r ) v ( r ) = v ( r ) 1 τ c 1 τ c v ( r ) ,
K 2 ( τ c , T ) = β e 2 x 1 + 2 x 2 x 2
K 2 ( τ c , T ) = β ρ 2 e 2 x 1 + 2 x 2 x 2 + 4 β ρ ( 1 ρ ) e x 1 + x x 2 + v n e + v n .
K 2 ( τ c , T ) = β e 2 x 2 1 + 2 π x erf ( 2 x ) 2 x 2 .
V ( r ) = V max ( 1 ( r R ) 2 ) .
Δ 1 τ c = 1 τ cb τ cp

Metrics