Abstract

Imaging and localizing single molecules with high accuracy in a 3D volume is a challenging task. Here we combine multifocal microscopy, a recently developed volumetric imaging technique, with point spread function engineering to achieve an increased depth for single molecule imaging. Applications in 3D single molecule localization-based super-resolution imaging is shown over an axial depth of 4 µm as well as for the tracking of diffusing beads in a fluid environment over 8 µm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

Laura Oudjedi, Jean-Bernard Fiche, Sara Abrahamsson, Laurent Mazenq, Aurélie Lecestre, Pierre-François Calmon, Aline Cerf, and Marcelo Nöllmann
Biomed. Opt. Express 7(6) 2163-2173 (2016)

PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking

Ignacio Izeddin, Mohamed El Beheiry, Jordi Andilla, Daniel Ciepielewski, Xavier Darzacq, and Maxime Dahan
Opt. Express 20(5) 4957-4967 (2012)

Design and simulation of a snapshot multi-focal interferometric microscope

Kuan He, Xiang Huang, Xiaolei Wang, Seunghwan Yoo, Pablo Ruiz, Itay Gdor, Nicola J. Ferrier, Norbert Scherer, Mark Hereld, Aggelos K. Katsaggelos, and Oliver Cossairt
Opt. Express 26(21) 27381-27402 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
    [Crossref] [PubMed]
  2. C. G. Galbraith and J. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
    [Crossref] [PubMed]
  3. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
    [Crossref] [PubMed]
  4. B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
    [Crossref] [PubMed]
  5. B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
    [Crossref] [PubMed]
  6. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [Crossref] [PubMed]
  7. I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
    [Crossref] [PubMed]
  8. A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
    [Crossref] [PubMed]
  9. N. S. Cheng, “Formula for the viscosity of a glycerol-water mixture,” Ind. Eng. Chem. Res. 47(9), 3285–3288 (2008).
    [Crossref]
  10. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12(10), 2145–2158 (1995).
    [Crossref]
  11. S. Jia, J. C. Vaughan, and X. W. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
    [Crossref] [PubMed]
  12. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
    [Crossref] [PubMed]

2014 (3)

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

S. Jia, J. C. Vaughan, and X. W. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

2012 (2)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
[Crossref] [PubMed]

2011 (1)

C. G. Galbraith and J. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref] [PubMed]

2010 (1)

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

2009 (1)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

2008 (3)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[Crossref] [PubMed]

N. S. Cheng, “Formula for the viscosity of a glycerol-water mixture,” Ind. Eng. Chem. Res. 47(9), 3285–3288 (2008).
[Crossref]

1995 (1)

Abrahamsson, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Agard, D. A.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Andilla, J.

Babcock, H.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Bargmann, C. I.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Bertaux, N.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[Crossref] [PubMed]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Chen, J.

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Cheng, N. S.

N. S. Cheng, “Formula for the viscosity of a glycerol-water mixture,” Ind. Eng. Chem. Res. 47(9), 3285–3288 (2008).
[Crossref]

Ciepielewski, D.

Dahan, M.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Darzacq, X.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Dugast Darzacq, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

El Beheiry, M.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
[Crossref] [PubMed]

Galbraith, C. G.

C. G. Galbraith and J. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

C. G. Galbraith and J. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref] [PubMed]

Gustafsson, M. G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Hajj, B.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Huang, B.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Izeddin, I.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
[Crossref] [PubMed]

Jia, S.

S. Jia, J. C. Vaughan, and X. W. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

Katsov, A. Y.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Mait, J. N.

Marguet, D.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[Crossref] [PubMed]

Mizuguchi, G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Moerner, W. E.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Mueller, F.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Piestun, R.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Revyakin, A.

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

Rigneault, H.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[Crossref] [PubMed]

Sergé, A.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[Crossref] [PubMed]

Soule, P.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Stallinga, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. W. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Wisniewski, J.

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Wu, C.

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Zhuang, X.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Zhuang, X. W.

S. Jia, J. C. Vaughan, and X. W. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

Cell (1)

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Ind. Eng. Chem. Res. (1)

N. S. Cheng, “Formula for the viscosity of a glycerol-water mixture,” Ind. Eng. Chem. Res. 47(9), 3285–3288 (2008).
[Crossref]

J. Cell Sci. (1)

C. G. Galbraith and J. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Methods (2)

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[Crossref] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Jia, J. C. Vaughan, and X. W. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

B. Hajj, J. Wisniewski, M. El Beheiry, J. Chen, A. Revyakin, C. Wu, and M. Dahan, “Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(49), 17480–17485 (2014).
[Crossref] [PubMed]

Science (1)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) The optical configuration to induce an astigmatic PSF in the multifocus microscope. L: laser, O: microscope objective, DM: dichroic mirror, TL: tube lens, PIP: primary image plane, L1, L2: lens, CL: cylindrical lens, MFG: multifocal grating, CCM: chromatic correction grating, C: camera. b) a snap shot of beads fluorescence as recorded in this optical configuration (scale bar 5 µm). The distorted PSF has an elliptical shape that depends on its axial position compared to each subpanel of the image. c) and d) xz and yz rendering of the distorted PSF showing the induced astigmatism. Scale bar 1 µm.
Fig. 2
Fig. 2 a) Astigmatism calibration curves as recorded on each of the 9 subpanels spaced axially by 440 nm. The x (blue curve) and y (red curve) widths are plotted as an average of multiple acquisitions. b) localization of beads over the displacement range of 5 µm. c) computed axial position of fluorescent beads that are displaced by steps of 300 nm. At each step 20 time points are acquired to access localization precision.
Fig. 3
Fig. 3 Super-resolution imaging of the nucleopore complex with MFM and astigmatism with a plane spacing of 440 nm. a) MFM widefield image of the corresponding structure, b) the STORM reconstructed structure after 30000 frames acquisition of single molecule blinking. Molecules are localized on top and bottom of the nucleus.
Fig. 4
Fig. 4 Beads of 200 nm diameter are placed in a viscous fluid (1:1 mixture of water and glycerol). The beads are tracked in time while diffusing in a flow. The imaging was performed for a plane spacing of 800nm between planes. a) Snap shot in time of the fluorescent beads that can appear on multiple consecutive planes. However useful localization information is usually retrieved from one or two planes at most b) the maximum intensity snap shot of the acquired time frames showing the particles trajectories, c) localizations as computed by the MFM + astigmatism setup, d) the mean square displacement of the recorded trajectories e) 3D diffusion coefficient histogram showing a peak value around 0.28 µm2/s, f) the flow velocity histogram.

Metrics