Abstract

Nowadays, laser therapy is a common method for treating various dermatological troubles such as acne and wrinkles because of its efficient and immediate skin enhancement. Although laser treatment has become a routine procedure in medical and cosmetic fields, the prevention of side-effects, such as hyperpigmentation, redness and burning, still remains a critical issue that needs to be addressed. In order to reduce the side-effects while attaining efficient therapeutic outcomes, it is essential to understand the light-skin interaction through evaluation of physiological changes before and after laser therapy. In this study, we introduce a quantitative tissue monitoring method based on optical coherence tomography (OCT) for the evaluation of tissue regeneration after laser irradiation. To create a skin injury model, we applied a fractional CO2 laser on a customized engineered skin model, which is analogous to human skin in terms of its basic biological function and morphology. The irradiated region in the skin was then imaged by a high-speed OCT system, and its morphologic changes were analyzed by automatic segmentation software. Volumetric OCT images in the laser treated area clearly visualized the wound healing progress at different time points and provided comprehensive information which cannot be acquired through conventional monitoring methods. The results showed that the laser wound in engineered skins was mostly recovered from within 1~2 days with a fast recovery time in the vertical direction. However, the entire recovery period varied widely depending on laser doses and skin type. Our results also indicated that OCT-guided laser therapy would be a very promising protocol for optimizing laser treatment for skin therapy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography

Meng-Tsan Tsai, Chih-Hsun Yang, Su-Chin Shen, Ya-Ju Lee, Feng-Yu Chang, and Cheng-Shin Feng
Biomed. Opt. Express 4(11) 2362-2375 (2013)

Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries

Moises Oliveira Dos Santos, Anne Latrive, Pedro Arthur Augusto De Castro, Wagner De Rossi, Telma Maria Tenorio Zorn, Ricardo Elgul Samad, Anderson Zanardi Freitas, Carlos Lenz Cesar, Nilson Dias Vieira Junior, and Denise Maria Zezell
Biomed. Opt. Express 8(3) 1575-1588 (2017)

Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography

Chih-Hsun Yang, Meng-Tsan Tsai, Su-Chin Shen, Chau Yee Ng, and Shih-Ming Jung
Biomed. Opt. Express 5(11) 3949-3959 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Hakozaki, C. L. Swanson, and D. L. Bissett, Textbook of Aging Skin (Springer, 2010), Chap. 51.
  2. Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatol. Nurs. 20(3), 177–184 (2008).
    [PubMed]
  3. G. Overton, D. A. Belforte, A. Nogee, and C. Holton, “Laser Marketplace 2015: Lasers surround us in the Year of Light,” http://www.laserfocusworld.com/articles/print/volume-51/issue-01/features/laser-marketplace-2015-lasers-surround-us-in-the-year-of-light.html .
  4. L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
    [Crossref] [PubMed]
  5. E. M. Graber, E. L. Tanzi, and T. S. Alster, “Side effects and complications of fractional laser photothermolysis: experience with 961 treatments,” Dermatol. Surg. 34(3), 301–307 (2008).
    [PubMed]
  6. W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts,” Scanning 26(1), 1–10 (2004).
    [Crossref] [PubMed]
  7. S. J. Lin, R. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, “Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy,” Opt. Lett. 30(17), 2275–2277 (2005).
    [Crossref] [PubMed]
  8. P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
    [Crossref] [PubMed]
  9. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
    [Crossref] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  11. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
    [Crossref] [PubMed]
  12. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  13. D. Xu, Y. Huang, and J. U. Kang, “GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography,” Opt. Express 22(12), 14871–14884 (2014).
    [Crossref] [PubMed]
  14. W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
    [Crossref]
  15. A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
    [Crossref] [PubMed]
  16. M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express 4(11), 2362–2375 (2013).
    [Crossref] [PubMed]
  17. E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
    [Crossref] [PubMed]
  18. C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
    [Crossref] [PubMed]
  19. P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
    [Crossref] [PubMed]
  20. T. Matsui and M. Amagai, “Dissecting the formation, structure and barrier function of the stratum corneum,” Int. Immunol. 27(6), 269–280 (2015).
    [Crossref] [PubMed]
  21. M. Varkey, J. Ding, and E. E. Tredget, “Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders,” Tissue Eng. Part A 20(3-4), 540–552 (2014).
    [PubMed]
  22. E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
    [Crossref] [PubMed]
  23. S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
    [Crossref] [PubMed]
  24. A. Atala and J. J. Yoo, Essentials of 3D Biofabrication and Translation (Academic Press, 2015), Chap. 22.
  25. S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
    [Crossref] [PubMed]
  26. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
    [Crossref] [PubMed]

2015 (4)

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

T. Matsui and M. Amagai, “Dissecting the formation, structure and barrier function of the stratum corneum,” Int. Immunol. 27(6), 269–280 (2015).
[Crossref] [PubMed]

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

2014 (4)

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

M. Varkey, J. Ding, and E. E. Tredget, “Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders,” Tissue Eng. Part A 20(3-4), 540–552 (2014).
[PubMed]

D. Xu, Y. Huang, and J. U. Kang, “GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography,” Opt. Express 22(12), 14871–14884 (2014).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

2013 (3)

M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express 4(11), 2362–2375 (2013).
[Crossref] [PubMed]

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
[Crossref] [PubMed]

2008 (3)

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatol. Nurs. 20(3), 177–184 (2008).
[PubMed]

E. M. Graber, E. L. Tanzi, and T. S. Alster, “Side effects and complications of fractional laser photothermolysis: experience with 961 treatments,” Dermatol. Surg. 34(3), 301–307 (2008).
[PubMed]

2007 (1)

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts,” Scanning 26(1), 1–10 (2004).
[Crossref] [PubMed]

2003 (2)

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

1997 (2)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[Crossref] [PubMed]

L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ahn, S. H.

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

Alster, T. S.

E. M. Graber, E. L. Tanzi, and T. S. Alster, “Side effects and complications of fractional laser photothermolysis: experience with 961 treatments,” Dermatol. Surg. 34(3), 301–307 (2008).
[PubMed]

Amagai, M.

T. Matsui and M. Amagai, “Dissecting the formation, structure and barrier function of the stratum corneum,” Int. Immunol. 27(6), 269–280 (2015).
[Crossref] [PubMed]

Atala, A.

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

Azzimonti, B.

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

Banzhaf, C. A.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Bernstein, L. J.

L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
[Crossref] [PubMed]

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[Crossref] [PubMed]

Boucher, Y.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Brown, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Calzavara-Pinton, P.

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Catalano, E.

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

Cavanagh, H. D.

W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts,” Scanning 26(1), 1–10 (2004).
[Crossref] [PubMed]

Chang, F. Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, J. S.

Chen, Z.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Chin, L.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Chun, W.

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

Cochis, A.

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

Ding, J.

M. Varkey, J. Ding, and E. E. Tredget, “Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders,” Tissue Eng. Part A 20(3-4), 540–552 (2014).
[PubMed]

diTomaso, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Dong, C. Y.

Draxinger, W.

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[Crossref] [PubMed]

Feng, C. S.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gangatirkar, P.

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

Geronemus, R. G.

L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
[Crossref] [PubMed]

Graber, E. M.

E. M. Graber, E. L. Tanzi, and T. S. Alster, “Side effects and complications of fractional laser photothermolysis: experience with 961 treatments,” Dermatol. Surg. 34(3), 301–307 (2008).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grossman, M. C.

L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
[Crossref] [PubMed]

Haedersdal, M.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Helfrich, Y. R.

Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatol. Nurs. 20(3), 177–184 (2008).
[PubMed]

Hsu, C. J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

Huber, R.

Jain, R. K.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Jee, S. H.

Jester, J. V.

W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts,” Scanning 26(1), 1–10 (2004).
[Crossref] [PubMed]

Jung, W.

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Jung, W. G.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

Kang, J. U.

Kao, B.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Karpf, S.

Kästle, R.

E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
[Crossref] [PubMed]

Kaur, P.

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

Kauvar, A. N.

L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
[Crossref] [PubMed]

Kelly, K. M.

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Kennedy, B. F.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Kim, G. H.

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

Klein, T.

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[Crossref] [PubMed]

Latham, B.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Lee, H. J.

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

Lee, J. S.

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

Lee, Y. J.

Li, A.

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

Liaw, L. H. L.

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, S. J.

Lin, W. C.

Lo, W.

Longo, C.

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Matsui, T.

T. Matsui and M. Amagai, “Dissecting the formation, structure and barrier function of the stratum corneum,” Int. Immunol. 27(6), 269–280 (2015).
[Crossref] [PubMed]

McKee, T.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

McLaughlin, R. A.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Meesters, A. A.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Mogensen, M.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Murphy, S. V.

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

Nelson, J. S.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Paasch, U.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Paquet-Fifield, S.

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

Pellacani, G.

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Petroll, W. M.

W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts,” Scanning 26(1), 1–10 (2004).
[Crossref] [PubMed]

Pfeiffer, T.

Pluen, A.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Poloczek, K.

E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rimondini, L.

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

Rossi, R.

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

Sachs, D. L.

Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatol. Nurs. 20(3), 177–184 (2008).
[PubMed]

Sala, R.

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Sampson, D. D.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Sattler, E. C. E.

E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
[Crossref] [PubMed]

Saunders, C. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seed, B.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Shen, S. C.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tan, H. Y.

Tanzi, E. L.

E. M. Graber, E. L. Tanzi, and T. S. Alster, “Side effects and complications of fractional laser photothermolysis: experience with 961 treatments,” Dermatol. Surg. 34(3), 301–307 (2008).
[PubMed]

Tredget, E. E.

M. Varkey, J. Ding, and E. E. Tredget, “Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders,” Tissue Eng. Part A 20(3-4), 540–552 (2014).
[PubMed]

Tromberg, B. J.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

Tsai, M. T.

Varkey, M.

M. Varkey, J. Ding, and E. E. Tredget, “Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders,” Tissue Eng. Part A 20(3-4), 540–552 (2014).
[PubMed]

Varoni, E.

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

Venturini, M.

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Voorhees, J. J.

Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatol. Nurs. 20(3), 177–184 (2008).
[PubMed]

Welzel, J.

E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
[Crossref] [PubMed]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[Crossref] [PubMed]

Wieser, W.

Wind, B. S.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Wolkerstorfer, A.

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Wu, R.

Xu, D.

Yang, C. H.

Yeh, A. T.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

Yoon, H.

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

Young, T. H.

Biomed. Opt. Express (2)

Dermatol. Nurs. (1)

Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatol. Nurs. 20(3), 177–184 (2008).
[PubMed]

Dermatol. Surg. (2)

L. J. Bernstein, A. N. Kauvar, M. C. Grossman, and R. G. Geronemus, “The short- and long-term side effects of carbon dioxide laser resurfacing,” Dermatol. Surg. 23(7), 519–525 (1997).
[Crossref] [PubMed]

E. M. Graber, E. L. Tanzi, and T. S. Alster, “Side effects and complications of fractional laser photothermolysis: experience with 961 treatments,” Dermatol. Surg. 34(3), 301–307 (2008).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 9(2), 222–226 (2003).
[Crossref]

Int. Immunol. (1)

T. Matsui and M. Amagai, “Dissecting the formation, structure and barrier function of the stratum corneum,” Int. Immunol. 27(6), 269–280 (2015).
[Crossref] [PubMed]

J. Am. Acad. Dermatol. (2)

E. C. E. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol. 69(4), e165–e173 (2013).
[Crossref] [PubMed]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[Crossref] [PubMed]

J. Artif. Organs (1)

E. Catalano, A. Cochis, E. Varoni, L. Rimondini, and B. Azzimonti, “Tissue-engineered skin substitutes: an overview,” J. Artif. Organs 16(4), 397–403 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

C. A. Banzhaf, B. S. Wind, M. Mogensen, A. A. Meesters, U. Paasch, A. Wolkerstorfer, and M. Haedersdal, “Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy,” Lasers Surg. Med. 12, 22386 (2015).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

Nat. Med. (1)

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Nat. Protoc. (1)

P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, “Establishment of 3D organotypic cultures using human neonatal epidermal cells,” Nat. Protoc. 2(1), 178–186 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84(6), 1421–1430 (2008).
[Crossref] [PubMed]

Scanning (1)

W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts,” Scanning 26(1), 1–10 (2004).
[Crossref] [PubMed]

Sci. Rep. (2)

S. H. Ahn, H. J. Lee, J. S. Lee, H. Yoon, W. Chun, and G. H. Kim, “A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures,” Sci. Rep. 5, 13427 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tissue Eng. Part A (1)

M. Varkey, J. Ding, and E. E. Tredget, “Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders,” Tissue Eng. Part A 20(3-4), 540–552 (2014).
[PubMed]

Other (3)

A. Atala and J. J. Yoo, Essentials of 3D Biofabrication and Translation (Academic Press, 2015), Chap. 22.

G. Overton, D. A. Belforte, A. Nogee, and C. Holton, “Laser Marketplace 2015: Lasers surround us in the Year of Light,” http://www.laserfocusworld.com/articles/print/volume-51/issue-01/features/laser-marketplace-2015-lasers-surround-us-in-the-year-of-light.html .

T. Hakozaki, C. L. Swanson, and D. L. Bissett, Textbook of Aging Skin (Springer, 2010), Chap. 51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the SD-OCT system used for observing skin regeneration. SLD: super-luminescent diode, C: Collimator, L: Lens.
Fig. 2
Fig. 2 Schematic of engineered skin preparation procedure. (A) Dermal layer of engineered skin was composed of acellular dermis containing collagen, and cellular dermis containing collagen and fibroblast. (B, C) After seven days, keratinocytes were cultured on the surface of a dermal layer. The epidermal monolayer formed as keratinocytes were proliferated and differentiated. After monolayer development, the submerged medium removed except the bottom of engineered skin for air exposure. (D) The epidermal multi-layer constructed using air-liquid interface culture.
Fig. 3
Fig. 3 Analysis of constitutive of engineered skin structures using a confocal microscope; epidermis is above the white dotted line and dermis is below the line. (A) Cross-sectional H&E stained image of engineered skin. (B) Proliferation of keratinocyte is shown by using proliferation marker, Ki-67 (green). (C) Epidermis-dermis junction is shown by using junctional protein, Laminin-5 (red). (D) Differentiation of keratinocyte is shown by using differentiation markers, involucrin (green) and filaggrin (red). Nucleus of keratinocyte demonstrates using DAPI staining method (blue).
Fig. 4
Fig. 4 The automatic segmentation algorithm for quantitative analysis of skin regeneration. The whole process is consisted of ‘Pre-filtering’, ‘Hole detection’, and ‘Hole estimation’.
Fig. 5
Fig. 5 Volumetric image of irradiated hole. The images were reconstructed by automatic segmentation. The engineered skin was irradiated by 80 mJ/cm2 laser power, and monitored every 6 hours; (A) 0 hours, (B) 6 hours, (C) 12 hours, (D) 18 hours, and (E) 24 hours after laser treatment was conducted.
Fig. 6
Fig. 6 The recovery process of engineered skin over 18 hours after laser irradiation. The samples are irradiated by 40 mJ/cm2 laser power monitored every 6 hours. No laser irradiated samples (A1-E1) show the difference compared to laser irradiated samples (A2-E2). (A, B) Microscopic images are corresponding to 3D OCT images in (C). The white arrow indicates the correlation of 3D OCT images compared to microscope images. (D) Cross-sectional 2D OCT images demonstrate similar aspects of H&E stained images in (E). The white star indicates the corresponding location of OCT image to H&E stained image.
Fig. 7
Fig. 7 Comparison of the relationship between epidermis thickness and wound depth with volume. The grey one indicates thin epidermal engineered skin, and the dark one is thick epidermal skin. (A) The thin epidermal engineered skin has an epidermal layer of 50 μm (from 350 μm to 400 μm), and the initial penetrated hole depth after layer irradiation is about 400 μm. In thick epidermal engineered skin, the epidermal thickness is about 100 μm (from 250 μm to 350 μm) and the initial penetrated hole depth is about 350 μm. The black star indicates the irradiated epidermal area. (B) The initial hole volume after irradiation is 3.3 million μm3 in thin epidermis skin and 1.2 million μm3 in the thick sample.
Fig. 8
Fig. 8 Comparison of the relationship between different laser powers and wound depth with volume. (A1) The hole depth after irradiation is about 420 μm in 120 mJ/cm2 laser power, (B1) 240 μm in 80 mJ/cm2 laser power, and (C1) 220 μm in 40 mJ/cm2 laser power. (A2) The volume after irradiation is about 2.6 million μm3 in 120 mJ/cm2 laser power, (B2) 0.9 million μm3 in 80 mJ/cm2 laser power, and (C2) 0.7 million μm3 in 40 mJ/cm2 laser power. The black star indicates the irradiated epidermal area.
Fig. 9
Fig. 9 Comparison of the change of recovery volume and normalized recovery ratio according to a variation of laser exposure power and epidermal thickness. The recovery volume indicates the difference between initial and the volumes which were measured every 6 hours. Similarly, the normalized recovery ratio was measured every 6 hours and indicates the extent of the wound that was recovered from the initial wound. (A1) The recovery volume and (A2) the recovery ratio of after 40 mJ/cm2 laser exposure, (B1) and (B2) after 80 mJ/cm2 laser exposure, (C1) and (C2) after 120 mJ/cm2 laser exposure.

Tables (1)

Tables Icon

Table 1 Comparison of laser wound healing study based on OCT.

Metrics