Abstract

A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm−1 that originates from the pyranose ring structure of glucose gave measurement errors less than 20%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor

Songlin Yu, Dachao Li, Hao Chong, Changyue Sun, Haixia Yu, and Kexin Xu
Biomed. Opt. Express 5(1) 275-286 (2014)

In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light

Sabbir Liakat, Kevin A. Bors, Tzu-Yung Huang, Anna P. M. Michel, Eric Zanghi, and Claire F. Gmachl
Biomed. Opt. Express 4(7) 1083-1090 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. D. Cunningham and J. A. Stenken, In Vivo Glucose Sensing (Wiley, 2010).
  2. S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
    [Crossref] [PubMed]
  3. N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
    [Crossref] [PubMed]
  4. J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
    [Crossref] [PubMed]
  5. J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
    [Crossref] [PubMed]
  6. J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem. 45(9), 1621–1627 (1999).
    [PubMed]
  7. J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
    [Crossref]
  8. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express 3(4), 667–680 (2012).
    [Crossref] [PubMed]
  9. H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
    [Crossref]
  10. M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
    [Crossref] [PubMed]
  11. J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
    [Crossref]
  12. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
    [Crossref] [PubMed]
  13. Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
    [Crossref] [PubMed]
  14. K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
    [Crossref] [PubMed]
  15. H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. (Noisy-le-grand) 44(6), 899–912 (1998).
    [PubMed]
  16. S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
    [Crossref] [PubMed]
  17. S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Biomed. Opt. Express 5(1), 275–286 (2014).
    [Crossref] [PubMed]
  18. K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.
  19. Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48(28), 5396–5400 (2009).
    [Crossref] [PubMed]
  20. S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
    [Crossref] [PubMed]
  21. Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23(2), 89–90 (1998).
    [Crossref] [PubMed]
  22. U. S. National Library of Medicine, Hazardous Substances Data Bank, http://toxnet.nlm.nih.gov/index.html
  23. H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).
  24. M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
    [Crossref]
  25. W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
    [Crossref] [PubMed]
  26. M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007).
    [Crossref] [PubMed]
  27. P. W. Wertz, D. C. Swartzendruber, and C. A. Squier, “Regional variation in the structure and permeability of oral mucosa and skin,” Adv. Drug Deliv. Rev. 12(1–2), 1–12 (1993).
    [Crossref]
  28. T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
    [Crossref] [PubMed]
  29. P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys. 4(22), 5671–5677 (2002).
    [Crossref]

2015 (1)

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
[Crossref]

2014 (2)

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Biomed. Opt. Express 5(1), 275–286 (2014).
[Crossref] [PubMed]

2013 (1)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

2012 (2)

2009 (2)

Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48(28), 5396–5400 (2009).
[Crossref] [PubMed]

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

2007 (1)

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007).
[Crossref] [PubMed]

2006 (1)

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

2005 (3)

H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref] [PubMed]

2003 (1)

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

2002 (3)

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys. 4(22), 5671–5677 (2002).
[Crossref]

2001 (1)

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

2000 (1)

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref] [PubMed]

1999 (1)

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem. 45(9), 1621–1627 (1999).
[PubMed]

1998 (2)

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. (Noisy-le-grand) 44(6), 899–912 (1998).
[PubMed]

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23(2), 89–90 (1998).
[Crossref] [PubMed]

1993 (2)

P. W. Wertz, D. C. Swartzendruber, and C. A. Squier, “Regional variation in the structure and permeability of oral mucosa and skin,” Adv. Drug Deliv. Rev. 12(1–2), 1–12 (1993).
[Crossref]

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

1984 (1)

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
[Crossref] [PubMed]

Abe, Y.

Alaam, M.

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

Arnold, M. A.

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref] [PubMed]

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref] [PubMed]

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem. 45(9), 1621–1627 (1999).
[PubMed]

Arnone, D. D.

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

Bauer, A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Berrens, L.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
[Crossref] [PubMed]

Block, M. B.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Borchert, M. S.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]

Bruls, W. A.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
[Crossref] [PubMed]

Burmeister, J. J.

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref] [PubMed]

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem. 45(9), 1621–1627 (1999).
[PubMed]

Cass, A. E. G.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Chong, H.

Davies, A. G.

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

de Leon, A.

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

Egawa, M.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007).
[Crossref] [PubMed]

El-Haes, H.

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

Elsey, T. S.

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

Enejder, A. M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Feld, M. S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Fujita, K.

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

Garidel, P.

P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys. 4(22), 5671–5677 (2002).
[Crossref]

Hashiguchi, Y.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Hazen, K. H.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Heise, H. M.

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. (Noisy-le-grand) 44(6), 899–912 (1998).
[PubMed]

Hertzberg, O.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Higaki, K.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Hirao, T.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007).
[Crossref] [PubMed]

Horowitz, G. L.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Hunter, M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Ibrahim, M.

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

Ichinose, K.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Ishizawa, H.

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

Jalbout, A. F.

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

Johnston, D. G.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Kajiwara, K.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Kaneko, W.

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

Katagiri, T.

Kimura, T.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Kino, S.

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48(28), 5396–5400 (2009).
[Crossref] [PubMed]

Kishikawa, H.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Kottmann, J.

Lambert, J. L.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]

Li, D.

Lieblein, T.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Lilienfeld-Toala, H.

H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Linfleld, E. H.

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

Luginbühl, J.

Mäntele, W.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Mäntelec, W.

H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Marbach, R.

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. (Noisy-le-grand) 44(6), 899–912 (1998).
[PubMed]

Matsumura, T.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Matsuura, Y.

Mermelstein, C.

Miyagi, M.

Morookian, J. M.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]

Murari, B. M.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
[Crossref]

Nishida, K.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Nishimatsu, T.

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

Ogawara, K.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Oh, J.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Olesberg, J. T.

Oliver, N. S.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Pleitez, M. A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Rani, A.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
[Crossref]

Reichmann, E.

Rennert, J. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Rey, J. M.

Ruchti, T. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Sakakida, M.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Sasic, S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Scecina, T. G.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Schmitz, J.

Shen, Y. C.

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

Shi, Y. W.

Shichiri, M.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Shih, W. C.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Sigrist, M. W.

Singh, V.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
[Crossref]

Sirk, S. J.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]

Slaper, H.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
[Crossref] [PubMed]

Small, G. W.

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref] [PubMed]

Squier, C. A.

P. W. Wertz, D. C. Swartzendruber, and C. A. Squier, “Regional variation in the structure and permeability of oral mucosa and skin,” Adv. Drug Deliv. Rev. 12(1–2), 1–12 (1993).
[Crossref]

Sun, C.

Swartzendruber, D. C.

P. W. Wertz, D. C. Swartzendruber, and C. A. Squier, “Regional variation in the structure and permeability of oral mucosa and skin,” Adv. Drug Deliv. Rev. 12(1–2), 1–12 (1993).
[Crossref]

Taday, P. F.

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

Takahashi, M.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007).
[Crossref] [PubMed]

Tamura, K.

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

Tanaka, A.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Tanaka, Y.

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

Thennadil, S. N.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Toba, E.

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

Toumazou, C.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Ueda, M.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Uehara, M.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Uemura, T.

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Uyama, H.

van der Leun, J. C.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
[Crossref] [PubMed]

Vashist, S. K.

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
[Crossref] [PubMed]

von Lilienfeld-Toal, H.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Wagner, J.

Wang, Y.

Weidenmüllerb, M.

H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Wenzel, B. J.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Wertz, P. W.

P. W. Wertz, D. C. Swartzendruber, and C. A. Squier, “Regional variation in the structure and permeability of oral mucosa and skin,” Adv. Drug Deliv. Rev. 12(1–2), 1–12 (1993).
[Crossref]

Xhelajc, A.

H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Xu, K.

Yadav, J.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
[Crossref]

Yamano, H.

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

Yu, H.

Yu, S.

Acta Derm. Venereol. (1)

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

P. W. Wertz, D. C. Swartzendruber, and C. A. Squier, “Regional variation in the structure and permeability of oral mucosa and skin,” Adv. Drug Deliv. Rev. 12(1–2), 1–12 (1993).
[Crossref]

Anal. Chem. (1)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biomed. Opt. Express (2)

Biomed. Signal Process. (1)

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. 18, 214–227 (2015).
[Crossref]

Cell. Mol. Biol. (Noisy-le-grand) (1)

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. (Noisy-le-grand) 44(6), 899–912 (1998).
[PubMed]

Clin. Chem. (1)

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem. 45(9), 1621–1627 (1999).
[PubMed]

Diabet. Med. (1)

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Diabetes Technol. Ther. (2)

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref] [PubMed]

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Eclet. Quím. (1)

M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, and A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose,” Eclet. Quím. 31(3), 15–21 (2006).
[Crossref]

J. Biomed. Opt. (2)

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

J. Pharm. Pharmacol. (1)

T. Kimura, H. Yamano, A. Tanaka, T. Matsumura, M. Ueda, K. Ogawara, and K. Higaki, “Transport of D-glucose across cultured stratified cell layer of human oral mucosal cells,” J. Pharm. Pharmacol. 54(2), 213–219 (2002).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]

Med. Biol. Eng. Comput. (1)

K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, and M. Shichiri, “Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa,” Med. Biol. Eng. Comput. 31(S1Suppl), S17–S22 (1993).
[Crossref] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (1)

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40(4), 485–494 (1984).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys. 4(22), 5671–5677 (2002).
[Crossref]

Phys. Med. Biol. (1)

Y. C. Shen, A. G. Davies, E. H. Linfleld, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

H. Lilienfeld-Toala, M. Weidenmüllerb, A. Xhelajc, and W. Mäntelec, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Other (4)

D. D. Cunningham and J. A. Stenken, In Vivo Glucose Sensing (Wiley, 2010).

K. Tamura, K. Fujita, W. Kaneko, T. Nishimatsu, H. Ishizawa, and E. Toba, “Noninvasive measurement of blood glucose based on optical sensing,” in Proceeding of IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005) pp. 1970–1974.

U. S. National Library of Medicine, Hazardous Substances Data Bank, http://toxnet.nlm.nih.gov/index.html

H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup and dimensions of ATR prism.

Fig. 2
Fig. 2

Measured absorption spectrum of lip mucosa.

Fig. 3
Fig. 3

Second derivative spectra of measured absorption of lip mucosa.

Fig. 4
Fig. 4

Calibration plots of the peak height of second derivatives at (a) 1155 cm−1 and (b) 1080 cm−1.

Fig. 5
Fig. 5

Difference spectra between the fasting state and state with higher blood glucose levels. Also shown (the thinner lines) are solution spectra created from least-squares fittings.

Fig. 6
Fig. 6

Differential absorption spectra at the 1155 cm−1 peak for different blood glucose levels.

Fig. 7
Fig. 7

Differential absorption measured after ingesting glucose solution (closed dots) compared with blood glucose levels measured by blood sampling (open dots).

Fig. 8
Fig. 8

Calibration plot, drawn on Clarke error grid, of glucose levels measured at lip mucosa compared with reference blood glucose level.

Metrics