Abstract

Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography

Shinnosuke Azuma, Shuichi Makita, Arata Miyazawa, Yasushi Ikuno, Masahiro Miura, and Yoshiaki Yasuno
Biomed. Opt. Express 9(7) 2955-2973 (2018)

Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions

James Polans, Brenton Keller, Oscar M. Carrasco-Zevallos, Francesco LaRocca, Elijah Cole, Heather E. Whitson, Eleonora M. Lad, Sina Farsiu, and Joseph A. Izatt
Biomed. Opt. Express 8(1) 16-37 (2017)

Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

Vedran Kajić, Marieh Esmaeelpour, Boris Považay, David Marshall, Paul L. Rosin, and Wolfgang Drexler
Biomed. Opt. Express 3(1) 86-103 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
    [Crossref] [PubMed]
  3. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
    [Crossref] [PubMed]
  4. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
    [Crossref] [PubMed]
  5. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [Crossref] [PubMed]
  6. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11(17), 1980–1986 (2003).
    [Crossref] [PubMed]
  7. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [Crossref] [PubMed]
  8. K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref] [PubMed]
  9. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
    [Crossref] [PubMed]
  10. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
    [PubMed]
  11. S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
    [Crossref] [PubMed]
  12. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
    [Crossref] [PubMed]
  13. E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
    [Crossref] [PubMed]
  14. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
    [Crossref] [PubMed]
  15. A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
    [Crossref] [PubMed]
  16. A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
    [Crossref] [PubMed]
  17. I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol Bjophthalmol. 98(Suppl 2), 15–19 (2014.
    [PubMed]
  18. F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
    [Crossref] [PubMed]
  19. A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
    [Crossref] [PubMed]
  20. R. Kafieh, H. Rabbani, and S. Kermani, “A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina,” J. Med. Signals Sens. 3(1), 45–60 (2013).
    [PubMed]
  21. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  22. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
    [Crossref] [PubMed]
  23. D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
    [Crossref] [PubMed]
  24. Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
    [Crossref] [PubMed]
  25. E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
    [Crossref] [PubMed]
  26. K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
    [Crossref] [PubMed]
  27. A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
    [Crossref] [PubMed]
  28. S. Hong, C. Y. Kim, and G. J. Seong, “Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle,” Invest. Ophthalmol. Vis. Sci. 51(8), 4067–4074 (2010).
    [Crossref] [PubMed]
  29. A. Uji and N. Yoshimura, “Application of Extended Field Imaging to Optical Coherence Tomography,” Ophthalmology 122(6), 1272–1274 (2015).
    [Crossref] [PubMed]
  30. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  31. K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
    [Crossref] [PubMed]
  32. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [Crossref] [PubMed]
  33. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  34. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
    [Crossref] [PubMed]
  35. N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
    [Crossref] [PubMed]
  36. Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
    [Crossref] [PubMed]
  37. M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
    [Crossref]
  38. H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
    [PubMed]
  39. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
    [Crossref] [PubMed]
  40. J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
    [Crossref] [PubMed]
  41. L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
    [Crossref] [PubMed]
  42. S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
    [Crossref] [PubMed]
  43. J. P. Lerch and A. C. Evans, “Cortical thickness analysis examined through power analysis and a population simulation,” Neuroimage 24(1), 163–173 (2005).
    [Crossref] [PubMed]
  44. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [Crossref] [PubMed]
  45. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
  46. A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
    [Crossref] [PubMed]
  47. R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
    [Crossref] [PubMed]
  48. S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
    [PubMed]
  49. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
    [Crossref]
  50. H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
    [Crossref] [PubMed]
  51. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [Crossref]
  52. P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graph. 2(4), 217–236 (1983).
    [Crossref]
  53. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
    [Crossref] [PubMed]
  54. S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
    [Crossref] [PubMed]
  55. V. L. Bonilha, “Age and disease-related structural changes in the retinal pigment epithelium,” Clin. Ophthalmol. 2(2), 413–424 (2008).
    [Crossref] [PubMed]
  56. M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express 18(22), 23435–23441 (2010).
    [Crossref] [PubMed]
  57. S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
    [Crossref] [PubMed]
  58. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
    [Crossref] [PubMed]
  59. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  60. Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
    [Crossref] [PubMed]
  61. A. J. Yezzi and J. L. Prince, “An Eulerian PDE approach for computing tissue thickness,” IEEE Trans. Med. Imaging 22(10), 1332–1339 (2003).
    [Crossref] [PubMed]
  62. O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
    [Crossref] [PubMed]
  63. J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
    [Crossref] [PubMed]

2015 (6)

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
[PubMed]

A. Uji and N. Yoshimura, “Application of Extended Field Imaging to Optical Coherence Tomography,” Ophthalmology 122(6), 1272–1274 (2015).
[Crossref] [PubMed]

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
[Crossref] [PubMed]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

2014 (6)

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol Bjophthalmol. 98(Suppl 2), 15–19 (2014.
[PubMed]

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

2013 (11)

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

R. Kafieh, H. Rabbani, and S. Kermani, “A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina,” J. Med. Signals Sens. 3(1), 45–60 (2013).
[PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
[Crossref] [PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

2012 (5)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (7)

Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express 18(22), 23435–23441 (2010).
[Crossref] [PubMed]

S. Hong, C. Y. Kim, and G. J. Seong, “Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle,” Invest. Ophthalmol. Vis. Sci. 51(8), 4067–4074 (2010).
[Crossref] [PubMed]

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

2009 (5)

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

2008 (3)

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

V. L. Bonilha, “Age and disease-related structural changes in the retinal pigment epithelium,” Clin. Ophthalmol. 2(2), 413–424 (2008).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

2007 (3)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

J. P. Lerch and A. C. Evans, “Cortical thickness analysis examined through power analysis and a population simulation,” Neuroimage 24(1), 163–173 (2005).
[Crossref] [PubMed]

2004 (2)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

2003 (3)

2000 (1)

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[Crossref] [PubMed]

1994 (1)

S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1983 (1)

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graph. 2(4), 217–236 (1983).
[Crossref]

Abràmoff, M. D.

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Abukhalil, F.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Acosta, O.

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

Adelson, E. H.

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graph. 2(4), 217–236 (1983).
[Crossref]

Aharon, I.

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[Crossref] [PubMed]

Ahnelt, P.

Akiba, M.

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

Alonso-Caneiro, D.

S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
[PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
[Crossref] [PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
[Crossref] [PubMed]

Ara, J. R.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Aroucha, P. R.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Bai, Y.

Bajraszewski, T.

Barry, S.

Baumann, B.

Beg, M. F.

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express 18(22), 23435–23441 (2010).
[Crossref] [PubMed]

Biedermann, B. R.

Binns, A.

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

Bitrian, E.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Bizheva, K.

Bogunovic, H.

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

Bonilha, V. L.

V. L. Bonilha, “Age and disease-related structural changes in the retinal pigment epithelium,” Clin. Ophthalmol. 2(2), 413–424 (2008).
[Crossref] [PubMed]

Bourgeat, P.

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

Brar, V. S.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
[Crossref] [PubMed]

Brown, M.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

Buchbinder, B. R.

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[Crossref] [PubMed]

Burt, P. J.

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graph. 2(4), 217–236 (1983).
[Crossref]

Bussel, I. I.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol Bjophthalmol. 98(Suppl 2), 15–19 (2014.
[PubMed]

Cable, A. E.

Calabresi, P. A.

Callén, C. I.

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

Callén, M. J. I.

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

Caprioli, J.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Carass, A.

Carroll, J. B.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

Chalam, K. V.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Chiu, S. J.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

Clark, M.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Collins, M. J.

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
[PubMed]

S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
[Crossref] [PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
[Crossref] [PubMed]

Davis, J. L.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

de Boer, J. F.

del Valle, F. G.

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Dorr, A.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

Downs, J. C.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Draxinger, W.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

Drexler, W.

Dubovy, S. R.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Duker, J. S.

Eigenwillig, C. M.

El-Dairi, M. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Esmaeelpour, M.

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

Esquiabro, M.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Evans, A. C.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

J. P. Lerch and A. C. Evans, “Cortical thickness analysis examined through power analysis and a population simulation,” Neuroimage 24(1), 163–173 (2005).
[Crossref] [PubMed]

Farsiu, S.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Fazio, M. A.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Fazzari, M.

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

Fercher, A.

Fernandez, J.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Feuer, W. J.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Flores-Moreno, I.

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Flynn, H. W.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Frey, K. A.

S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
[PubMed]

Fripp, J.

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

Fujimoto, J. G.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[Crossref] [PubMed]

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

Fung, A. E.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Garcia-Martin, E.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Garvin, M. K.

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Gibson, E.

Girard, M. J.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Girkin, C. A.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Gregori, G.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
[Crossref] [PubMed]

Gregori, N. Z.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grover, S.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
[Crossref] [PubMed]

Grulkowski, I.

Gwiazda, J.

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

Hamann, B.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

Han, S. X.

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

Hangai, M.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Harb, E.

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

Hariri, A.

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

Haritoglou, C.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

Hauser, M.

Hayden, M. R.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Henkelman, R. M.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

Hermann, B.

Herrero, R.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Heussen, F. M.

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

Holzwarth, R.

Hong, S.

S. Hong, C. Y. Kim, and G. J. Seong, “Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle,” Invest. Ophthalmol. Vis. Sci. 51(8), 4067–4074 (2010).
[Crossref] [PubMed]

Hornegger, J.

Hosseini, H.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Hu, Z.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Huang, D.

Huber, R.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

Huisingh, C.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Hyman, L.

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

Ikuno, Y.

Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
[Crossref] [PubMed]

Inoue, R.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Izatt, J. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Jayaraman, V.

Jiang, J.

Johnstone, J.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Jones, C. E.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Jones, S. E.

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[Crossref] [PubMed]

Kafieh, R.

R. Kafieh, H. Rabbani, and S. Kermani, “A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina,” J. Med. Signals Sens. 3(1), 45–60 (2013).
[PubMed]

Kaluzny, B.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

Kampik, A.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

Kawaguchi, K.

Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
[Crossref] [PubMed]

Kemp, P.

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

Kermani, S.

R. Kafieh, H. Rabbani, and S. Kermani, “A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina,” J. Med. Signals Sens. 3(1), 45–60 (2013).
[PubMed]

Kim, C. Y.

S. Hong, C. Y. Kim, and G. J. Seong, “Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle,” Invest. Ophthalmol. Vis. Sci. 51(8), 4067–4074 (2010).
[Crossref] [PubMed]

Klein, T.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

Knight, J.

Koeppe, R. A.

S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
[PubMed]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Kolb, J. P.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

Kotera, Y.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Kowalczyk, A.

Kraus, M. F.

Kufner, C. L.

Kuhl, D. E.

S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
[PubMed]

Kuo, A. N.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Kwon, Y. H.

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

Lalwani, G. A.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Lam, B. L.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
[Crossref] [PubMed]

Lang, A.

Larrosa, J. M.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Lee, E. C.

Lee, G. Y.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Lee, K.

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Lee, S.

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express 18(22), 23435–23441 (2010).
[Crossref] [PubMed]

Lee, S. Y.

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

Leitgeb, R.

Lemij, H. G.

Lerch, J. P.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

J. P. Lerch and A. C. Evans, “Cortical thickness analysis examined through power analysis and a population simulation,” Neuroimage 24(1), 163–173 (2005).
[Crossref] [PubMed]

Li, X. T.

Li, Y.

Lim, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Lowe, D. G.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Lu, C. D.

Lugo, F.

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

Mackenzie, P. J.

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

Manjunath, V.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Margolis, R.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

Margrain, T.

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

Mari, J. M.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Marques, M. L.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Marsh-Tootle, W.

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

Martin, J.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

McNabb, R. P.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Medina, F. J. L.

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

Mei, M.

Michels, S.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Minoshima, S.

S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
[PubMed]

Mo, J.

Moghimi, S.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Mohler, K. J.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

Montero, J. A.

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

Morante, A.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Mori, S.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Mujat, M.

Muñoz-Negrete, F. J.

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

Murthy, R. K.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
[Crossref] [PubMed]

Nakanishi, H.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Neubauer, A. S.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

Nicholas, P.

Niemeijer, M.

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Nilforushan, N.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Nittala, M. G.

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

Nouchi, T.

Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
[Crossref] [PubMed]

Nouri-Mahdavi, K.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Nukada, M.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Ourselin, S.

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

Ouyang, Y.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Owsley, C.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Pablo, L. E.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Polo, V.

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

Pope, J. M.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Potsaid, B.

Povazay, B.

Považay, B.

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

Pozzoni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Prince, J. L.

Pritchard, N.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rabbani, H.

R. Kafieh, H. Rabbani, and S. Kermani, “A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina,” J. Med. Signals Sens. 3(1), 45–60 (2013).
[PubMed]

Ranganathan, S.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Read, S. A.

S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
[PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
[Crossref] [PubMed]

Rebolleda, G.

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

Rhodes, L. A.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Riddle, J.

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Rosenfeld, P. J.

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
[Crossref] [PubMed]

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Ruiz-Garcia, H.

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

Ruiz-Medrano, J.

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

Ruiz-Moreno, J. M.

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

Russell, P. S.

Sadda, S. R.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

Sakamoto, A.

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Salvado, O.

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

Saragovi, H. U.

Sarunic, M. V.

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express 18(22), 23435–23441 (2010).
[Crossref] [PubMed]

Sattmann, H.

Schmetterer, L.

Schmid, K. L.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Schubert, C.

Schuman, J. S.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol Bjophthalmol. 98(Suppl 2), 15–19 (2014.
[PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scott, D. H.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Seong, G. J.

S. Hong, C. Y. Kim, and G. J. Seong, “Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle,” Invest. Ophthalmol. Vis. Sci. 51(8), 4067–4074 (2010).
[Crossref] [PubMed]

Sheen, N.

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

Sled, J. G.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

Smith, B.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Sonka, M.

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Sotirchos, E. S.

Spaide, R. F.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Spring, S.

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stone, E. M.

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Taha, M.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Toth, C. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Uji, A.

A. Uji and N. Yoshimura, “Application of Extended Field Imaging to Optical Coherence Tomography,” Ophthalmology 122(6), 1272–1274 (2015).
[Crossref] [PubMed]

Unterhuber, A.

van Ginneken, B.

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Vermeer, K. A.

Vincent, S. J.

S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
[PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
[Crossref] [PubMed]

Wadsworth, W.

Wang, L.

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Weda, J. J.

Werner, J. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

Wieser, W.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

Wojtkowski, M.

Wolf, A.

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

Wollstein, G.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol Bjophthalmol. 98(Suppl 2), 15–19 (2014.
[PubMed]

Wood, A.

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

Wu, X.

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Xu, J.

Yasuno, Y.

Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
[Crossref] [PubMed]

Yazdanpanah, A.

Yezzi, A. J.

A. J. Yezzi and J. L. Prince, “An Eulerian PDE approach for computing tissue thickness,” IEEE Trans. Med. Imaging 22(10), 1332–1339 (2003).
[Crossref] [PubMed]

Ying, H. S.

Yoshimura, N.

A. Uji and N. Yoshimura, “Application of Extended Field Imaging to Optical Coherence Tomography,” Ophthalmology 122(6), 1272–1274 (2015).
[Crossref] [PubMed]

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

Young, M.

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

Yun, S. H.

Zawadzki, R.

Zawadzki, R. J.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

Zuluaga, M. A.

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

ACM Trans. Graph. (1)

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graph. 2(4), 217–236 (1983).
[Crossref]

Am. J. Ophthalmol. (8)

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” Am. J. Ophthalmol. 148(2), 266–271 (2009).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour, and N. Sheen, “Retinal and choroidal thickness in early age-related macular degeneration,” Am. J. Ophthalmol. 152(6), 1030–1038 (2011).
[Crossref] [PubMed]

F. J. L. Medina, C. I. Callén, G. Rebolleda, F. J. Muñoz-Negrete, M. J. I. Callén, and F. G. del Valle, “Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema,” Am. J. Ophthalmol. 153(3), 536–543 (2012).
[Crossref] [PubMed]

A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
[Crossref] [PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Br. J. Ophthalmol Bjophthalmol. (1)

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol Bjophthalmol. 98(Suppl 2), 15–19 (2014.
[PubMed]

Clin. Ophthalmol. (1)

V. L. Bonilha, “Age and disease-related structural changes in the retinal pigment epithelium,” Clin. Ophthalmol. 2(2), 413–424 (2008).
[Crossref] [PubMed]

Exp. Eye Res. (1)

S. A. Read, D. Alonso-Caneiro, S. J. Vincent, and M. J. Collins, “Peripapillary choroidal thickness in childhood,” Exp. Eye Res. 135, 164–173 (2015).
[Crossref] [PubMed]

Hum. Brain Mapp. (1)

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (2)

H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abràmoff, and X. Wu, “Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography,” IEEE Trans. Med. Imaging 33(12), 2242–2253 (2014).
[Crossref] [PubMed]

A. J. Yezzi and J. L. Prince, “An Eulerian PDE approach for computing tissue thickness,” IEEE Trans. Med. Imaging 22(10), 1332–1339 (2003).
[Crossref] [PubMed]

Int. J. Comput. Vis. (2)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (13)

K. J. Mohler, W. Draxinger, T. Klein, J. P. Kolb, W. Wieser, C. Haritoglou, A. Kampik, J. G. Fujimoto, A. S. Neubauer, R. Huber, and A. Wolf, “Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 56(11), 6284–6293 (2015).
[Crossref] [PubMed]

J. M. Ruiz-Moreno, I. Flores-Moreno, F. Lugo, J. Ruiz-Medrano, J. A. Montero, and M. Akiba, “Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 353–359 (2013).
[Crossref] [PubMed]

L. A. Rhodes, C. Huisingh, J. Johnstone, M. A. Fazio, B. Smith, L. Wang, M. Clark, J. C. Downs, C. Owsley, M. J. Girard, J. M. Mari, and C. A. Girkin, “Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes,” Invest. Ophthalmol. Vis. Sci. 56(3), 1872–1879 (2015).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal Thickness in Myopic and Nonmyopic Children Assessed With Enhanced Depth Imaging Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 54(12), 7578–7586 (2013).
[Crossref] [PubMed]

A. Sakamoto, M. Hangai, M. Nukada, H. Nakanishi, S. Mori, Y. Kotera, R. Inoue, and N. Yoshimura, “Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(10), 5062–5070 (2010).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci. 54(5), 3586–3593 (2013).
[Crossref] [PubMed]

K. Lee, M. Sonka, Y. H. Kwon, M. K. Garvin, and M. D. Abràmoff, “Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 54(7), 4808–4812 (2013).
[Crossref] [PubMed]

A. Hariri, S. Y. Lee, H. Ruiz-Garcia, M. G. Nittala, F. M. Heussen, and S. R. Sadda, “Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(9), 5287–5291 (2012).
[Crossref] [PubMed]

S. Hong, C. Y. Kim, and G. J. Seong, “Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle,” Invest. Ophthalmol. Vis. Sci. 51(8), 4067–4074 (2010).
[Crossref] [PubMed]

S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie, “Optic nerve head and peripapillary morphometrics in myopic glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(7), 4378–4393 (2014).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
[Crossref] [PubMed]

J. Med. Signals Sens. (1)

R. Kafieh, H. Rabbani, and S. Kermani, “A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina,” J. Med. Signals Sens. 3(1), 45–60 (2013).
[PubMed]

J. Nucl. Med. (1)

S. Minoshima, R. A. Koeppe, K. A. Frey, and D. E. Kuhl, “Anatomic standardization: linear scaling and nonlinear warping of functional brain images,” J. Nucl. Med. 35(9), 1528–1537 (1994).
[PubMed]

J. Ophthalmic Vis. Res. (1)

H. Hosseini, N. Nilforushan, S. Moghimi, E. Bitrian, J. Riddle, G. Y. Lee, J. Caprioli, and K. Nouri-Mahdavi, “Peripapillary and macular choroidal thickness in glaucoma,” J. Ophthalmic Vis. Res. 9(2), 154–161 (2014).
[PubMed]

Med. Image Anal. (1)

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin, “Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps,” Med. Image Anal. 13(5), 730–743 (2009).
[Crossref] [PubMed]

Neuroimage (2)

J. P. Lerch, J. B. Carroll, A. Dorr, S. Spring, A. C. Evans, M. R. Hayden, J. G. Sled, and R. M. Henkelman, “Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease,” Neuroimage 41(2), 243–251 (2008).
[Crossref] [PubMed]

J. P. Lerch and A. C. Evans, “Cortical thickness analysis examined through power analysis and a population simulation,” Neuroimage 24(1), 163–173 (2005).
[Crossref] [PubMed]

Ophthalmology (3)

E. Garcia-Martin, V. Polo, J. M. Larrosa, M. L. Marques, R. Herrero, J. Martin, J. R. Ara, J. Fernandez, and L. E. Pablo, “Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography,” Ophthalmology 121(2), 573–579 (2014).
[Crossref] [PubMed]

N. Z. Gregori, B. L. Lam, G. Gregori, S. Ranganathan, E. M. Stone, A. Morante, F. Abukhalil, and P. R. Aroucha, “Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis,” Ophthalmology 120(1), 169–174 (2013).
[Crossref] [PubMed]

A. Uji and N. Yoshimura, “Application of Extended Field Imaging to Optical Coherence Tomography,” Ophthalmology 122(6), 1272–1274 (2015).
[Crossref] [PubMed]

Opt. Express (9)

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11(17), 1980–1986 (2003).
[Crossref] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[Crossref] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
[Crossref] [PubMed]

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express 18(22), 23435–23441 (2010).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Optom. Vis. Sci. (2)

E. Harb, L. Hyman, M. Fazzari, J. Gwiazda, and W. Marsh-Tootle, “Factors associated with macular thickness in the COMET myopic cohort,” Optom. Vis. Sci. 89(5), 620–631 (2012).
[Crossref] [PubMed]

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591 (2009).
[Crossref]

Retina (1)

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina 35(6), 1223–1233 (2015).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Example of a 45° wide-field single B-scan captured with the spectral domain OCT using the instrument’s high resolution scanning protocol (a) with the segmented (b) B-scan with the three boundaries of interest (inner limiting membrane (ILM) [blue line], retinal pigment epithelium (RPE) [red line] and chorio-scleral interface (CSI) [green line]). The image was segmented using graph-search algorithms [10, 21, 23]. White arrows in (a) mark the opening of Bruch's membrane.
Fig. 2
Fig. 2 Example of a wide-field montage data analysis. SLO images (FOV 30° x 30°) from the spectral domain OCT captured at different retinal locations (a-temporal, b-central and c-nasal). The green box indicates the area covered by the OCT scans (FOV 30° x 25°), while the marks (blue square, red circles) show common features in the overlapping portions of the SLO images identified using the SIFT approach. The bottom row presents the resulting blended/registered data for the en-face SLO image (FOV 60° by 30°) (d) as well as its corresponding retinal thickness map (e) and choroidal thickness map (FOV 60° x 25°) (f). The thickness was calculated using the axial method.
Fig. 3
Fig. 3 A representative example of an aligned and blended SLO image, formed by three overlapping images. A smooth transition of the retinal vasculature can be observed, along with good alignment of the manually selected points used to validate the automatic procedure. Eight landmarks per overlapping region were identified in each of the SLO image-pairs (circle, cross), 16 in total per subject considering both overlapping regions (temporal-central and central-nasal).
Fig. 4
Fig. 4 Root mean square error (RMSE) calculated as the difference between the choroidal thickness at the rotated angle and the no tilt image for the different metrics considered in this study (a) and the log version of the same graph (b). A representative example of the original B-scan (0 degree angle) and its tilted version (10 degree angle) is also provided.
Fig. 5
Fig. 5 Group mean (n = 43) retinal thickness map (a) and choroidal thickness map (b) using the axial thickness metric. The optic nerve head corresponding to the maximum size of the group has been masked from the image. The central circle indicates the foveal location. The x and y axes are in mm.
Fig. 6
Fig. 6 Group mean retinal thickness difference maps (left) and significance maps (right) (n = 43) for the considered alternative thickness metrics, including the (a-b) normal, (c-d) layered normal, (e-f) minimum distance, (g-h) minimum distance averaged, (i-j) Laplace. For reference, the central fovea is marked with a circle while the optic nerve head (ONH) is masked from the analysis, given that no thickness data can be extracted within this region. The size of the ONH in the figure corresponds to the maximum ONH size of all subjects. Negative difference values indicate an underestimation of tissue thickness by the axial method compared to the alternative metric, while positive values indicate an overestimation. P-values in the significance map are from a two-tailed paired t-test performed on the difference at each data point.
Fig. 7
Fig. 7 Group mean choroidal thickness difference maps (left) and significance maps (right) (n = 43) for the considered alternative thickness metrics, including the (a-b) normal, (c-d) layered normal, (e-f) minimum distance, (g-h) minimum distance averaged, (i-j) Laplace. For reference, the central fovea is marked with a circle while the optic nerve head (ONH) is masked from the analysis, given that no thickness data can be extracted within this region. The size of the ONH in the figure corresponds to the maximum ONH size of all subjects. Negative difference values indicate an underestimation of tissue thickness by the axial method compared to the alternative metric, while positive values indicate an overestimation. P-values in the significance map are from a two-tailed paired t-test performed on the difference at each data point.
Fig. 8
Fig. 8 Group mean retinal (left subplots) and choroidal thickness difference maps (right subplots). Each group presents maps for emmetropes (left) and myopes (right) for the considered alternative thickness metrics, including the (a-b) normal, (c-d) layered normal, (e-f) minimum distance, (g-h) minimum distance averaged, (i-j) Laplace. For reference, the central fovea is marked with a circle while the optic nerve head (ONH) is masked from the analysis, given that no thickness data can be extracted within this region. The size of the ONH in the figure corresponds to the maximum ONH size of all subjects. Negative difference values indicate an underestimation of tissue thickness by the axial method compared to the alternative metric, while positive values indicate an overestimation.
Fig. 9
Fig. 9 Group mean retinal (left) and choroidal (right) percentage thickness error maps (n = 43) for the considered alternative thickness metrics, including the (a-b) normal, (c-d) layered normal, (e-f) minimum distance, (g-h) minimum distance averaged, (i-j) Laplace. For reference, the central fovea is marked with a circle while the optic nerve head (ONH) is masked from the analysis, given that no thickness data can be extracted within this region. The size of the ONH in the figure corresponds to the maximum ONH size of all subjects.

Tables (1)

Tables Icon

Table 1 Percentage of the map with highly statistically significant differences (p<0.00001) between the axial thickness map and the alternative method for both retinal and choroidal maps and myopic and emmetropic subjects.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 ψ= 2 ψ x 2 + 2 ψ y 2 =0
ψ i+1 (x,y)=[ ψ i (x+Δx,y)+ ψ i (xΔx,y)+ ψ i (x,y+Δy)+ ψ i (x,yΔy) ]/4
ε i = ( ( Δ ψ i / Δx ) 2 + ( Δ ψ i / Δy ) 2 ) 1/2

Metrics