Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness among elderly individuals. Geographic atrophy (GA) is a phenotypic manifestation of the advanced stages of non-exudative AMD. Determination of GA extent in SD-OCT scans allows the quantification of GA-related features, such as radius or area, which could be of important value to monitor AMD progression and possibly identify regions of future GA involvement. The purpose of this work is to develop an automated algorithm to segment GA regions in SD-OCT images. An en face GA fundus image is generated by averaging the axial intensity within an automatically detected sub-volume of the three dimensional SD-OCT data, where an initial coarse GA region is estimated by an iterative threshold segmentation method and an intensity profile set, and subsequently refined by a region-based Chan-Vese model with a local similarity factor. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to quantitatively evaluate the automated segmentation algorithm. We compared results obtained by the proposed algorithm, manual segmentation by graders, a previously proposed method, and experimental commercial software. When compared to a manually determined gold standard, our algorithm presented a mean overlap ratio (OR) of 81.86% and 70% for the first and second data sets, respectively, while the previously proposed method OR was 72.60% and 65.88% for the first and second data sets, respectively, and the experimental commercial software OR was 62.40% for the second data set.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semi-automatic geographic atrophy segmentation for SD-OCT images

Qiang Chen, Luis de Sisternes, Theodore Leng, Luoluo Zheng, Lauren Kutzscher, and Daniel L. Rubin
Biomed. Opt. Express 4(12) 2729-2750 (2013)

Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography

Rui Zhao, Acner Camino, Jie Wang, Ahmed M. Hagag, Yansha Lu, Steven T. Bailey, Christina J. Flaxel, Thomas S. Hwang, David Huang, Dengwang Li, and Yali Jia
Biomed. Opt. Express 8(11) 5049-5064 (2017)

Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes

Luis de Sisternes, Gowtham Jonna, Jason Moss, Michael F. Marmor, Theodore Leng, and Daniel L. Rubin
Biomed. Opt. Express 8(3) 1926-1949 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
    [PubMed]
  2. R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
    [Crossref] [PubMed]
  3. M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
    [Crossref] [PubMed]
  4. J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
    [Crossref] [PubMed]
  5. R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
    [Crossref] [PubMed]
  6. H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
    [Crossref] [PubMed]
  7. I. Bhutto and G. Lutty, “Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex,” Mol. Aspects Med. 33(4), 295–317 (2012).
    [Crossref] [PubMed]
  8. R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
    [Crossref] [PubMed]
  9. J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
    [PubMed]
  10. J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
    [Crossref] [PubMed]
  11. A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
    [Crossref] [PubMed]
  12. F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
    [Crossref] [PubMed]
  13. Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
    [Crossref] [PubMed]
  14. B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
    [Crossref] [PubMed]
  15. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
    [Crossref] [PubMed]
  16. F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
    [Crossref] [PubMed]
  17. Q. Chen, L. de Sisternes, T. Leng, L. Zheng, L. Kutzscher, and D. L. Rubin, “Semi-automatic geographic atrophy segmentation for SD-OCT images,” Biomed. Opt. Express 4(12), 2729–2750 (2013).
    [Crossref] [PubMed]
  18. Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
    [Crossref] [PubMed]
  19. G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
    [PubMed]
  20. C. M. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy”, in: IEEE Conference on Computer Vision and Pattern Recognition16, 1–7 (2007).
    [Crossref]
  21. K. H. Zhang, H. H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” Pattern Recognit. 43(4), 1199–1206 (2010).
    [Crossref]
  22. S. Liu and Y. Peng, “A local region-based Chan-Vese model for image segmentation,” Pattern Recognit. 45(7), 2769–2779 (2012).
    [Crossref]
  23. Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
    [Crossref]
  24. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10(2), 266–277 (2001).
    [Crossref] [PubMed]
  25. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
    [Crossref] [PubMed]
  26. Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
    [Crossref] [PubMed]
  27. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1995).
  28. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation,” J. Comput. Phys. 79(1), 12–49 (1988).
    [Crossref]
  29. L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
    [Crossref] [PubMed]
  30. L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
    [Crossref] [PubMed]
  31. Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
    [PubMed]
  32. R. Gonzales and R. Woods, Digital Image Processing (Prentice Hall,1992), Chapter 6.
  33. M. Sonka, V. Hlavac, and R. Boyl, Image Processing, Analysis and Machine Vision (CL Engineering, 1993), Chapter 6.

2016 (1)

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

2015 (3)

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
[Crossref] [PubMed]

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

2014 (1)

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

2013 (4)

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

Q. Chen, L. de Sisternes, T. Leng, L. Zheng, L. Kutzscher, and D. L. Rubin, “Semi-automatic geographic atrophy segmentation for SD-OCT images,” Biomed. Opt. Express 4(12), 2729–2750 (2013).
[Crossref] [PubMed]

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

2012 (3)

I. Bhutto and G. Lutty, “Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex,” Mol. Aspects Med. 33(4), 295–317 (2012).
[Crossref] [PubMed]

S. Liu and Y. Peng, “A local region-based Chan-Vese model for image segmentation,” Pattern Recognit. 45(7), 2769–2779 (2012).
[Crossref]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

2011 (2)

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

2010 (2)

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

K. H. Zhang, H. H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” Pattern Recognit. 43(4), 1199–1206 (2010).
[Crossref]

2009 (2)

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

2008 (1)

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

2007 (3)

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

2005 (2)

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref] [PubMed]

2004 (1)

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

2001 (1)

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10(2), 266–277 (2001).
[Crossref] [PubMed]

1999 (2)

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

1995 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1995).

1988 (1)

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

Adrion, C.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Alexander, J.

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

Applegate, C. A.

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

Armstrong, J. R.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Barron, Y.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

Bergman, A.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

Bhutto, I.

I. Bhutto and G. Lutty, “Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex,” Mol. Aspects Med. 33(4), 295–317 (2012).
[Crossref] [PubMed]

Bindewald-Wittich, A.

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Bressler, N. M.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

Brinkmann, C. K.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Buch, H.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

Cao, G.

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

Chan, T. F.

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10(2), 266–277 (2001).
[Crossref] [PubMed]

Charbel Issa, P.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Chen, Q.

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

Q. Chen, L. de Sisternes, T. Leng, L. Zheng, L. Kutzscher, and D. L. Rubin, “Semi-automatic geographic atrophy segmentation for SD-OCT images,” Biomed. Opt. Express 4(12), 2729–2750 (2013).
[Crossref] [PubMed]

Chew, E. Y.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

Chia, E. M.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

Chiu, S. J.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Clemons, T. E.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Cumming, R. G.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

de Sisternes, L.

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
[Crossref] [PubMed]

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

Q. Chen, L. de Sisternes, T. Leng, L. Zheng, L. Kutzscher, and D. L. Rubin, “Semi-automatic geographic atrophy segmentation for SD-OCT images,” Biomed. Opt. Express 4(12), 2729–2750 (2013).
[Crossref] [PubMed]

Ding, Z.

C. M. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy”, in: IEEE Conference on Computer Vision and Pattern Recognition16, 1–7 (2007).
[Crossref]

Dreyhaupt, J.

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Eter, N.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Etya’ale, D.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Falcão, M.

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

Farsiu, S.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Ferris, F. L.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Feuer, W.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Feuer, W. J.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

Fleckenstein, M.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Folgar, F. A.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

Gangnon, R. E.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

Garcia Filho, C. A. A.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

Gensler, G. R.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Gonzalez-Baron, J.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

Gore, J.

C. M. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy”, in: IEEE Conference on Computer Vision and Pattern Recognition16, 1–7 (2007).
[Crossref]

Gregori, G.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref] [PubMed]

Hariri, A.

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

Hawkins, B.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

Helb, H. M.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Hernandez, M.

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

Holz, F. G.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Hu, J.

L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
[Crossref] [PubMed]

Hu, Z.

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

Huang, X.

Izatt, J. A.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Jensen, G. B.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

Ji, Z.

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

Jiao, S.

Kao, C.

C. M. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy”, in: IEEE Conference on Computer Vision and Pattern Recognition16, 1–7 (2007).
[Crossref]

Kiss, C.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Klein, B. E.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

Klein, M. L.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Klein, R.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

Knighton, R.

Knighton, R. W.

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

Knudtson, M. D.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

Kocur, I.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Krämer, I.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Kreil, D. P.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Kutzscher, L.

la Cour, M.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

Lee, A. J.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

Leng, T.

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

Q. Chen, L. de Sisternes, T. Leng, L. Zheng, L. Kutzscher, and D. L. Rubin, “Semi-automatic geographic atrophy segmentation for SD-OCT images,” Biomed. Opt. Express 4(12), 2729–2750 (2013).
[Crossref] [PubMed]

Li, C. M.

C. M. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy”, in: IEEE Conference on Computer Vision and Pattern Recognition16, 1–7 (2007).
[Crossref]

Lindblad, A. S.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Liu, S.

S. Liu and Y. Peng, “A local region-based Chan-Vese model for image segmentation,” Pattern Recognit. 45(7), 2769–2779 (2012).
[Crossref]

Lloyd, P. C.

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Lujan, B.

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

Lujan, B. J.

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

Lutty, G.

I. Bhutto and G. Lutty, “Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex,” Mol. Aspects Med. 33(4), 295–317 (2012).
[Crossref] [PubMed]

Mansmann, U.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

Mariotti, S. P.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Marmor, M. F.

L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
[Crossref] [PubMed]

Martinez, O.

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

Medioni, G. G.

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

Meuer, S. M.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

Mitchell, P.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

Montuoro, A.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Moshfeghi, A. A.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Nielsen, N. V.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

Niu, S.

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

Nunes, R. P.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

O’Connell, R. V.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Osher, S.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1995).

Pararajasegaram, R.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Pascolini, D.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Peng, Y.

S. Liu and Y. Peng, “A local region-based Chan-Vese model for image segmentation,” Pattern Recognit. 45(7), 2769–2779 (2012).
[Crossref]

Penha, F. M.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

Pokharel, G. P.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Prause, J. U.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

Prünte, C.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Puliafito, C.

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

Resnikoff, S.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

Rochtchina, E.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

Rosenfeld, P. J.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

Rubin, D. L.

L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
[Crossref] [PubMed]

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

Q. Chen, L. de Sisternes, T. Leng, L. Zheng, L. Kutzscher, and D. L. Rubin, “Semi-automatic geographic atrophy segmentation for SD-OCT images,” Biomed. Opt. Express 4(12), 2729–2750 (2013).
[Crossref] [PubMed]

Sacu, S.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Sadda, S. R.

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

Sayegh, R. G.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Scheschy, U.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Schmitz-Valckenberg, S.

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Scholl, H. P.

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Sethian, J. A.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

Sevilla, M. B.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

Shen, H.

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

Simader, C.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

Simon, N.

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

Smith, W.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

Song, H. H.

K. H. Zhang, H. H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” Pattern Recognit. 43(4), 1199–1206 (2010).
[Crossref]

Stetson, P. F.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Sun, Q.

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

Sunness, J. S.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

Swift, M.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

Tian, Y.

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

Tibshirani, R.

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

Toth, C. A.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Tsechpenakis, G.

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

Vese, L. A.

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10(2), 266–277 (2001).
[Crossref] [PubMed]

Vinding, T.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

Wang, F.

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

Wang, J. J.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

Winter, K. P.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Wu, X.

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

Xia, Y.

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

Yehoshua, Z.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

Yuan, E. L.

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

Zhang, K. H.

K. H. Zhang, H. H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” Pattern Recognit. 43(4), 1199–1206 (2010).
[Crossref]

Zhang, L.

K. H. Zhang, H. H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” Pattern Recognit. 43(4), 1199–1206 (2010).
[Crossref]

Zheng, L.

Am. J. Ophthalmol. (1)

F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. Scholl, S. Schmitz-Valckenberg, and FAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472 (2007).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

A. S. Lindblad, P. C. Lloyd, T. E. Clemons, G. R. Gensler, F. L. Ferris, M. L. Klein, J. R. Armstrong, and Age-Related Eye Disease Study Research Group, “Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26,” Arch. Ophthalmol. 127(9), 1168–1174 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Bull. World Health Organ. (1)

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ. 82(11), 844–851 (2004).
[PubMed]

IEEE Trans. Image Process. (1)

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10(2), 266–277 (2001).
[Crossref] [PubMed]

IEEE Trans. Syst. Man Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1995).

Inf. Sci. (1)

Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local likelihood image fitting energy for image segmentation,” Inf. Sci. 301, 285–304 (2015).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (6)

L. de Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: inner versus outer retina, parafovea versus peripheral fovea,” Invest. Ophthalmol. Vis. Sci. 56(5), 3415–3426 (2015).
[Crossref] [PubMed]

L. de Sisternes, N. Simon, R. Tibshirani, T. Leng, and D. L. Rubin, “Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression,” Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014).
[Crossref] [PubMed]

Z. Hu, G. G. Medioni, M. Hernandez, A. Hariri, X. Wu, and S. R. Sadda, “Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images,” Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383 (2013).
[Crossref] [PubMed]

M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H. M. Helb, C. K. Brinkmann, P. Charbel Issa, U. Mansmann, and F. G. Holz, “Tracking Progression with Spectral-Domain Optical Coherence Tomography in Geographic Atrophy Caused by Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

J. S. Sunness, N. M. Bressler, Y. Tian, J. Alexander, and C. A. Applegate, “Measuring geographic atrophy in advanced age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 40(8), 1761–1769 (1999).
[PubMed]

J. Comput. Phys. (1)

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

Med Image Comput Comput Assist Interv (1)

G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, “Geometric deformable model driven by CoCRFs: application to optical coherence tomography,” Med Image Comput Comput Assist Interv 11(Pt 1), 883–891 (2008).
[PubMed]

Mol. Aspects Med. (1)

I. Bhutto and G. Lutty, “Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex,” Mol. Aspects Med. 33(4), 295–317 (2012).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging Retina (2)

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina 44(4), 344–359 (2013).
[Crossref] [PubMed]

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg. Lasers Imaging Retina 44(2), 127–132 (2013).
[Crossref] [PubMed]

Ophthalmology (7)

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy,” Ophthalmology 118(9), 1844–1851 (2011).
[Crossref] [PubMed]

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology 114(1), 92–98 (2007).
[Crossref] [PubMed]

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology 114(2), 253–262 (2007).
[Crossref] [PubMed]

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology 112(5), 787–798 (2005).
[Crossref] [PubMed]

F. A. Folgar, E. L. Yuan, M. B. Sevilla, S. J. Chiu, S. Farsiu, E. Y. Chew, C. A. Toth, and Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group, “Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration,” Ophthalmology 123(1), 39–50 (2016).
[Crossref] [PubMed]

J. S. Sunness, J. Gonzalez-Baron, C. A. Applegate, N. M. Bressler, Y. Tian, B. Hawkins, Y. Barron, and A. Bergman, “Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration,” Ophthalmology 106(9), 1768–1779 (1999).
[Crossref] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography,” Ophthalmology 118(4), 679–686 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Pattern Recognit. (2)

K. H. Zhang, H. H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” Pattern Recognit. 43(4), 1199–1206 (2010).
[Crossref]

S. Liu and Y. Peng, “A local region-based Chan-Vese model for image segmentation,” Pattern Recognit. 45(7), 2769–2779 (2012).
[Crossref]

Transl. Vis. Sci. Technol. (1)

Q. Chen, S. Niu, H. Shen, T. Leng, L. de Sisternes, and D. L. Rubin, “Restricted summed-area projection for geographic atrophy visualization in SD-OCT images,” Transl. Vis. Sci. Technol. 4(5), 2 (2015).
[PubMed]

Other (3)

R. Gonzales and R. Woods, Digital Image Processing (Prentice Hall,1992), Chapter 6.

M. Sonka, V. Hlavac, and R. Boyl, Image Processing, Analysis and Machine Vision (CL Engineering, 1993), Chapter 6.

C. M. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy”, in: IEEE Conference on Computer Vision and Pattern Recognition16, 1–7 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The pipeline of the proposed automatic GA segmentation method.
Fig. 2
Fig. 2 An example of GA projection image generation. (a) B-scan across the center of the fovea, with the projection upper and lower limit boundaries used in our approach marked with white lines. (b) Traditional SVP GA projection image. (c) Resulting GA projection image used in our approach. The blue lines indicated in (b) and (c) correspond to the location of the B-scan across the center of the fovea shown in (a).
Fig. 3
Fig. 3 (a) GA projection image with GA contour generated by manual segmentation. (b) Histogram of GA region and background and the threshold using OTSU method over the whole projection image. (c) Segmentation result obtained by OSTU method in the first iteration. (d) Histogram of the whole image where the mean value of the foreground region resulting from the first iteration and the values corresponding to the restricted region for the second iteration are indicated. (e) Final result for the coarse GA segmentation.
Fig. 4
Fig. 4 (a) GA projection image. (b) Projection image intensity profile at the vertical location indicated by the blue line in (a). (c) Intensity profile at the same vertical location after filtering by 5 × 5 moving average filter. (d) Collection of intensity profiles at all the vertical locations in the image. The maximum horizontal profile is shown in (e) and (f). The red line shown in (e) indicates the selected threshold and the light blue braces indicate horizontal GA candidate regions.
Fig. 5
Fig. 5 (a) Result obtained by morphological opening of the coarse segmentation shown in Fig. 3(e), (b) Results after elimination of connected regions at the image border. (c) Refinement results after filling considering the horizontal GA candidate regions.
Fig. 6
Fig. 6 (a) Average GA reparability across a set of 43 SD-OCT cubes for different values of depth of sub-RPE parameter (h). (b) a scatterplot of estimated area vs actual area of the GA regions.
Fig. 7
Fig. 7 (a) Refined coarse result with the stopping criteria presented here. (b) Iterative threshold variation throughout subsequent iterations. (c) Refined coarse result at convergence. The white outlines represent the refined coarse results.
Fig. 8
Fig. 8 Quantitative comparison of segmentation accuracy of our proposed CVLSF method (red dashed line) and the traditional C-V method (blue dashed line) at different noise levels. The figure is divided in three rows for two different noise distribution characteristics, with the particular images used for testing displayed in each row. The images in the first row were corrupted by Gaussian noise under 5 noise levels, i.e., {0.001, 0.005, 0.01, 0.02, 0.03}and the images in the second row were corrupted by Speckle noise level under 5 noise levels, i.e., {0.01, 0.05, 0.1, 0.15, 0.2}.
Fig. 9
Fig. 9 Quantitative comparison of segmentation accuracy of our proposed CVLSF method and the traditional C-V method in the first data set. The first and second columns show the results of the traditional C-V method and the traditional C-V method with bilateral filtering as a denoising pre-processing step, respectively. The third column shows the results for the proposed CVLSF method. The blue bars indicate the mean Jaccard index resulting from each segmentation method in the first data set, and the images on the right of each bar show the segmented outlines on an example GA projection image. Red and white outlines are the final segmentation results and initialization outlines, respectively.
Fig. 10
Fig. 10 Examples displaying the automatically segmented GA regions in SD-OCT projection images.
Fig. 11
Fig. 11 Manual segmentation examples by two different experts and at two different sessions outlined in RSVP projection images. The region of interest outlined in orange in each RSVP projection image is also shown zoomed in for larger detail. The color label for each observer and session outline is indicated in the legend in the bottom right.
Fig. 12
Fig. 12 Segmentation results using the proposed method, QC’s method and average expert segmentation (considered as manual gold standard). The cases shown are the same as in Fig. 11 for direct comparison. The region of interest outlined in orange in each RSVP projection image is also shown zoomed in for larger detail. The color label for each segmentation method is indicated in the legend in the bottom right.
Fig. 13
Fig. 13 Comparison of outlines generated by manual segmentation, commercial software, QC’s method and our method presented here in three GA patients form the second data set. The color employed for each outline is indicated in the legend on top of the images.

Tables (3)

Tables Icon

Table 1 Intra-observer and inter-observer correlation coefficients (cc), paired U-test p-values, absolute GA area differences (AAD) and overlap ratio (OR) evaluation

Tables Icon

Table 2 Quantitative comparison of our algorithm segmentation results (shown in boldface and between parenthesis) and QC’s method results to manual gold standard (Avg. Expert) and individual reader segmentation

Tables Icon

Table 3 Correlation coefficients (cc), paired p-values U-test, absolute differences and overlap ratio in areas of GA between our segmentation method (Our Seg.), QC’s method, commercial software segmentation (Com. Sw. Seg.), and expert segmentations manually outlined in FAF images (FAF)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

T h n = OTSU( I( i ) ) i{ N R n ( i )=1 }
G R n ( i )={ 1 I( i )T h n 0 I( i )<T h n
B R n ( i )={ 1 I( i )<T h n 0 I( i )T h n
N R n+1 ( i )={ 1 I( i )< mean( I( k ) ) k{ G R n ( k )=1 } 0 I( i ) mean( I( k ) ) k{ G R n ( k )=1 }
criterion for next iteration{ continue T h n+1 T h n c stop T h n+1 T h n <c
E( c 1 , c 2 ,C )= λ 1 in( C ) ( | I( x,y ) c 1 | 2 +LS F 1 ( x,y ) )dxdy + λ 2 out( C ) ( | I( x,y ) c 2 | 2 +LS F 2 ( x,y ) )dxdy +μLength( C )
E( c 1 , c 2 ,Φ( x,y ) ) = λ 1 Ω ( | I( x,y ) c 1 | 2 H( Φ( x,y ) )+LS F 1 ( x,y )H( Φ( x,y ) ) )dxdy+ λ 2 Ω ( | I( x,y ) c 2 | 2 ( 1H( Φ( x,y ) ) )+LS F 2 ( x,y )( 1H( Φ( x,y ) ) ) )dxdy +μ Ω δ( Φ( x,y ) )| Φ( x,y ) |dxdy
H ε ( z )= 1 2 ( 1+ 2 π arctan z ε ) and δ ε ( z )= 1 π ε ε 2 + z 2 , zR
{ c 1 ( Φ( x,y ) )= Ω I( x,y )H( Φ( x,y ) )dxdy Ω H( Φ( x,y ) )dxdy c 2 ( Φ( x,y ) )= Ω I( x,y )( 1H( Φ( x,y ) ) )dxdy Ω ( 1H( Φ( x,y ) ) )dxdy
{ LS F 1 ( x,y )= ( i,j ) N ( x,y ) | I( i,j ) c 1 | 2 d ( x,y ),( i,j ) LS F 2 ( x,y )= ( i,j ) N ( x,y ) | I( i,j ) c 2 | 2 d ( x,y ),( i,j )
Φ( x,y ) t =δ( Φ( x,y ) )( λ 2 | I( x,y ) c 2 | 2 λ 1 | I( x,y ) c 1 | 2 + λ 2 LS F 2 ( x,y ) λ 1 LS F 1 ( x,y )+μ( Φ( x,y ) Φ( x,y ) 2 ) )
AAD ¯ ( X;Y )= 1 N n=1 N | Area( X n )Area( Y n ) |
std( AAD )( X;Y )= 1 N n=1 N ( | Area( X n )Area( Y n ) | AAD ¯ ( X;Y ) ) 2
OR ¯ ( X;Y )= 1 N n=1 N Area( X n Y n ) Area( X n Y n )
std( OR )( X;Y )= 1 N n=1 N ( Area( X n Y n ) Area( X n Y n ) OR ¯ ( X;Y ) ) 2
S GA = max i=1 254 j=1 K | B i (j)G(j) | K

Metrics