Abstract

Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: a pilot study in psoriasis patients

Shih-Yu Tzeng, Jean-Yan Guo, Chao-Chun Yang, Chao-Kai Hsu, Hung Ji Huang, Shih-Jie Chou, Chi-Hung Hwang, and Sheng-Hao Tseng
Biomed. Opt. Express 7(2) 616-628 (2016)

Broadband absorption and reduced scattering spectra of in-vivo skin can be noninvasively determined using δ-P1 approximation based spectral analysis

Cheng-Hung Hung, Ting-Chun Chou, Chao-Kai Hsu, and Sheng-Hao Tseng
Biomed. Opt. Express 6(2) 443-456 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Goldsmith, S. Katz, B. Gilchrest, A. Paller, D. Leffell, and K. Wolff, Fitzpatrick’s Dermatology in General Medicine, Eighth Edition, 2 Volume set (McGraw-Hill Education, 2012).
  2. I. M. Braverman, “Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states,” J. Invest. Dermatol. 93(S2), 2S–9S (1989).
    [Crossref] [PubMed]
  3. S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
    [Crossref] [PubMed]
  4. E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
    [Crossref] [PubMed]
  5. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010).
    [Crossref] [PubMed]
  6. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
    [Crossref] [PubMed]
  7. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35(10), 1756–1766 (1996).
    [Crossref] [PubMed]
  8. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  9. T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  10. M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
    [Crossref] [PubMed]
  11. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref] [PubMed]
  12. D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
    [Crossref] [PubMed]
  13. Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
    [Crossref] [PubMed]
  14. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999).
    [Crossref]
  15. K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
    [Crossref] [PubMed]
  16. S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
    [Crossref] [PubMed]
  17. C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
    [Crossref] [PubMed]
  18. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
    [Crossref] [PubMed]
  19. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  20. J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
    [Crossref] [PubMed]
  21. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
    [Crossref]
  22. J. L. Solan and K. Laden, “Factors affecting the penetration of light through stratum corneum,” J. Soc. Cosmet. Chem. 28, 125–137 (1977).
  23. X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
    [Crossref] [PubMed]
  24. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible Correlation between Blood Glucose Concentration and the Reduced Scattering Coefficient of Tissues in the near Infrared,” Opt. Lett. 19(24), 2062–2064 (1994).
    [Crossref] [PubMed]
  25. V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
    [Crossref] [PubMed]
  26. J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res. 295(2), 50–55 (2003).
    [Crossref] [PubMed]

2015 (4)

S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
[Crossref] [PubMed]

E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
[Crossref] [PubMed]

Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
[Crossref] [PubMed]

C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
[Crossref] [PubMed]

2014 (1)

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

2013 (1)

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

2010 (2)

2009 (1)

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

2008 (1)

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

2006 (2)

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
[Crossref] [PubMed]

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

2005 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2003 (1)

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res. 295(2), 50–55 (2003).
[Crossref] [PubMed]

1999 (3)

1998 (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

1996 (2)

X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
[Crossref] [PubMed]

R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35(10), 1756–1766 (1996).
[Crossref] [PubMed]

1995 (1)

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

1994 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

1989 (1)

I. M. Braverman, “Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states,” J. Invest. Dermatol. 93(S2), 2S–9S (1989).
[Crossref] [PubMed]

1977 (1)

J. L. Solan and K. Laden, “Factors affecting the penetration of light through stratum corneum,” J. Soc. Cosmet. Chem. 28, 125–137 (1977).

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Alerstam, E.

Andersson-Engels, S.

Autio-Harmainen, H.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Backman, V.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Bays, R.

Bevilacqua, F.

Bigio, I. J.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

Braichotte, D.

Braverman, I. M.

I. M. Braverman, “Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states,” J. Invest. Dermatol. 93(S2), 2S–9S (1989).
[Crossref] [PubMed]

Bruhns, M.

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res. 295(2), 50–55 (2003).
[Crossref] [PubMed]

Calabro, K. W.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

Cappon, D. J.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

Chang, M. C.

X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
[Crossref] [PubMed]

Chen, W. R.

Chen, Y. W.

Crawford, J. M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Dadani, F.

Davé, D. P.

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

De Lorenzo, A.

E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
[Crossref] [PubMed]

Depeursinge, C.

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Durkin, A. J.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Fang, Q.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

Fantini, S.

Farrell, T. J.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Feld, M. S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Franceschini, M. A.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Gratton, E.

Gross, J. D.

Hamano, T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Han, T. D.

Hayakawa, C.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Hayward, J. E.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

Honold, S.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Hsu, C. K.

Huang, L. L.

Hughes, M.

Itzkan, I.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Kallionen, M.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Karvonen, J.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Kienle, A.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Kim, A.

Kim, J.

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Koivukangas, V.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Laden, K.

J. L. Solan and K. Laden, “Factors affecting the penetration of light through stratum corneum,” J. Soc. Cosmet. Chem. 28, 125–137 (1977).

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Lee, J. Y.

Liao, Y. K.

Lilge, L.

Lima, C.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Liu, Q.

Lo, W. C.

Loran, E.

S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
[Crossref] [PubMed]

Maier, J. S.

Manoharan, R.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Marquet, P.

Milner, T. E.

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
[Crossref] [PubMed]

Monnier, P.

Nelson, J. S.

X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
[Crossref] [PubMed]

Nusrat, A.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Oh, J.

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

Oikarinen, A.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Oliveira, G. M.

E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
[Crossref] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Perelman, L. T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Piguet, D.

Pilz, M.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Podtaev, S.

S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
[Crossref] [PubMed]

Ramanujam, N.

Risteli, J.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Risteli, L.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Robert, D.

Rose, J.

Roy, M.

Rylander, C. G.

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

Savary, J. F.

Seiler, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Shields, S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Smirnova, E.

S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
[Crossref] [PubMed]

Solan, J. L.

J. L. Solan and K. Laden, “Factors affecting the penetration of light through stratum corneum,” J. Soc. Cosmet. Chem. 28, 125–137 (1977).

Souza, E. G.

E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
[Crossref] [PubMed]

Spanier, J.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Stepanov, R.

S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
[Crossref] [PubMed]

Sterenborg, H. J.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Tibirica, E.

E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
[Crossref] [PubMed]

Tromberg, B. J.

Tseng, S. H.

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Tzeng, S. Y.

Van Dam, J.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

van den Bergh, H.

Wagnières, G.

Walker, S. A.

Wallace, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Wang, X. J.

X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
[Crossref] [PubMed]

Welzel, J.

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res. 295(2), 50–55 (2003).
[Crossref] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

Wolff, H. H.

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res. 295(2), 50–55 (2003).
[Crossref] [PubMed]

Yang, C. C.

Zonios, G.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Appl. Opt. (3)

Arch. Dermatol. Res. (2)

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased Collagen Synthesis in Psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res. 295(2), 50–55 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

J. Biomed. Opt. (5)

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

X. J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996).
[Crossref] [PubMed]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

I. M. Braverman, “Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states,” J. Invest. Dermatol. 93(S2), 2S–9S (1989).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

J. Soc. Cosmet. Chem. (1)

J. L. Solan and K. Laden, “Factors affecting the penetration of light through stratum corneum,” J. Soc. Cosmet. Chem. 28, 125–137 (1977).

Lasers Surg. Med. (1)

J. Kim, D. P. Davé, C. G. Rylander, J. Oh, and T. E. Milner, “Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy,” Lasers Surg. Med. 38(10), 955–959 (2006).
[Crossref] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Microvasc. Res. (2)

S. Podtaev, R. Stepanov, E. Smirnova, and E. Loran, “Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction,” Microvasc. Res. 97, 109–114 (2015).
[Crossref] [PubMed]

E. Tibirica, E. G. Souza, A. De Lorenzo, and G. M. Oliveira, “Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease,” Microvasc. Res. 97, 105–108 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Other (1)

L. Goldsmith, S. Katz, B. Gilchrest, A. Paller, D. Leffell, and K. Wolff, Fitzpatrick’s Dermatology in General Medicine, Eighth Edition, 2 Volume set (McGraw-Hill Education, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The side view of the two SRDRS optical fiber probes configured in MTL and classical geometries. Note that the detector fiber of the MTL probe is in contact with the sample.
Fig. 2
Fig. 2 (a) μa and (b) μs' spectra of the liquid phantom LP2 recovered by the MTL ANN (red lines), MTL diffusion (blue lines), and classical SRDRS ANN (gray lines). The benchmark optical property spectra of LP2 are depicted as dashed lines.
Fig. 3
Fig. 3 The ratio of diffuse reflectance spectra of LP1 and LP2 determined from simulation (black lines) and experiment (red lines) in various geometry parameters: (a) MTL geometry with SDS of 1 mm, (b) MTL geometry with SDS of 2 mm, (c) classical SRDRS geometry with SDS of 1 mm, and (d) classical SRDRS geometry with SDS of 2 mm.
Fig. 4
Fig. 4 (a) Monte Carlo simulated photon travel lengths of the MTL (red) and classical SRDRS (blue) probes at SDSs of 1 (unfilled symbol) and 2 (filled symbol) mm for the nine samples listed in Table 1. Error bars representing standard deviation are smaller than symbols and are not visible in the figure. (b) Percent difference of photon travel lengths of the classical SRDRS probe from those of the MTL probe.
Fig. 5
Fig. 5 (a) Monte Carlo simulated maximum interrogation depths of the MTL and classical SRDRS probes at SDSs of 1 and 2 mm for the nine samples listed in Table 1. Error bars representing standard deviation are smaller than symbols and are not visible in the figure. (b) Percent difference of interrogation depths of the classical SRDRS probe from those of the MTL probe.
Fig. 6
Fig. 6 In-vivo measured (a) μa and (b) μs' spectra of the in-vivo swine back skin recovered using the MTL (black lines) and the classical SRDRS probe (red lines). Error bars indicate the standard deviation of five measurements.
Fig. 7
Fig. 7 H&E sections of the swine back skin. S1 to S4 represent sections of different depths proceeding from epidermis to deep dermis. It can be seen that S1 and S4 contain the dermal-epidermal and dermal-subcutaneous junctions, respectively. Collagen bundles can be observed in all sections. Black and green arrows represent smooth muscle bundles and vascular plexus, respectively.
Fig. 8
Fig. 8 Skin of the two patients with psoriasis recruited in this study; (a) patient 1 (forearm) and (b) patient 2 (lower leg). The red circles marked with P and N indicate the measurement sites of psoriatic skin and normal skin, respectively.
Fig. 9
Fig. 9 Optical properties (a) μa and (b) μs' spectra of the psoriatic (solid lines) and normal (dashed lines) sites of patient 1 recovered using the MTL probe (red lines) and the classical SRDRS probe (blue lines). Error bars indicate the standard deviation of three measurements.
Fig. 10
Fig. 10 Optical properties (a) μa and (b) μs' spectra of the psoriatic (solid lines) and normal (dashed lines) sites of patient 2 recovered using the MTL probe (red lines) and the classical SRDRS probe (blue lines). Error bars indicate the standard deviation of three measurements.

Tables (5)

Tables Icon

Table 1 The sample optical properties used in the Monte Carlo simulations.

Tables Icon

Table 2 The recipe of liquid phantoms

Tables Icon

Table 3 Scatterer size and volume density determined by fitting the μs' spectra illustrated in Fig. 6(b) to Mie scattering theory.

Tables Icon

Table 4 Average chromophore concentrations and standard deviations of a psoriatic subject (patient 1) recovered using the MTL and classical DRS geometries. Collagen and melanin have arbitrary unit.

Tables Icon

Table 5 Average chromophore concentrations and standard deviations of a psoriatic subject (patient 2) recovered using the MTL and classical DRS geometries. Collagen and melanin have arbitrary unit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ 1 c i t + μ ai [ D i (r)] ] Φ i (r,t)= S i (r,t)
ϕ 2 (z,s)= sinh[ α 1 ( z b + z 0 )] D 1 α 1 cosh[ α 1 (l+ z b )]+ D 2 α 2 sinh[ α 1 (l+ z b )]

Metrics