Abstract

We implemented a novel lock-in photon-counting detection architecture that combines the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique. Based on this technique, a dual-wavelength simultaneous measurement continuous wave diffuse optical tomography system was developed with a configuration of 16 sources and 16 detectors that works in a tandem serial-to-parallel fashion. Methodology validation and performance assessment of the system were conducted using phantom experiments that demonstrate excellent measurement linearity, moderate-term system stability, robustness to noise and negligible inter-wavelength crosstalk. 2-D imaging experiments further validate high sensitivity of the lock-in photon-counting methodology as well as high reliability of the proposed system. The advanced detection principle can be adapted to achieving a fully parallelized instrumentation for the extended applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics

Jianjun Yang, Tao Zhang, Hao Yang, and Huabei Jiang
Appl. Opt. 51(16) 3461-3469 (2012)

Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system

Danial Chitnis, Robert J. Cooper, Laura Dempsey, Samuel Powell, Simone Quaggia, David Highton, Clare Elwell, Jeremy C. Hebden, and Nicholas L. Everdell
Biomed. Opt. Express 7(10) 4275-4288 (2016)

Time-domain fluorescence-guided diffuse optical tomography based on the third-order simplified harmonics approximation

Wenjuan Ma, Wei Zhang, Xi Yi, Jiao Li, Linhui Wu, Xin Wang, Limin Zhang, Zhongxing Zhou, Huijuan Zhao, and Feng Gao
Appl. Opt. 51(36) 8656-8668 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref] [PubMed]
  2. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
    [Crossref] [PubMed]
  3. C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
    [Crossref] [PubMed]
  4. Y. Hoshi, “Towards the next generation of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci 369(1955), 4425–4439 (2011).
    [Crossref] [PubMed]
  5. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [Crossref] [PubMed]
  6. X. Zhang, “Instrumentation in diffuse optical tomography,” Photonics 1(1), 9–32 (2014).
    [Crossref] [PubMed]
  7. A. Siegel, J. J. A. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4(8), 287–298 (1999).
    [Crossref] [PubMed]
  8. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42(16), 3054–3062 (2003).
    [Crossref] [PubMed]
  9. J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
    [Crossref] [PubMed]
  10. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  11. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
    [Crossref] [PubMed]
  12. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref] [PubMed]
  13. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
    [Crossref] [PubMed]
  14. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  15. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
    [Crossref] [PubMed]
  16. B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
    [Crossref] [PubMed]
  17. M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
    [Crossref] [PubMed]
  18. K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
    [Crossref] [PubMed]
  19. Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
    [Crossref] [PubMed]
  20. A. Restelli, R. Abbiati, and A. Geraci, “Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications,” Rev. Sci. Instrum. 76(9), 093112 (2005).
    [Crossref]
  21. D. Braun and A. Libchaber, “Computer-based photon-counting lock-in for phase detection at the shot-noise limit,” Opt. Lett. 27(16), 1418–1420 (2002).
    [Crossref] [PubMed]
  22. W. Becker, Advanced Time-Correlated Signal Photon Counting Techniques (Springer-Verlag, 2005).
  23. B. Saleh, Photoelectron Statistics (Springer-Verlag,1978).
  24. J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57(1), 182–189 (2008).
    [Crossref]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
    [Crossref]
  26. D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
    [Crossref]
  27. F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
    [Crossref]

2014 (3)

X. Zhang, “Instrumentation in diffuse optical tomography,” Photonics 1(1), 9–32 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

2012 (2)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

2011 (3)

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

Y. Hoshi, “Towards the next generation of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci 369(1955), 4425–4439 (2011).
[Crossref] [PubMed]

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

2009 (1)

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

2008 (2)

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57(1), 182–189 (2008).
[Crossref]

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

2007 (2)

D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[Crossref]

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

2005 (4)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

A. Restelli, R. Abbiati, and A. Geraci, “Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications,” Rev. Sci. Instrum. 76(9), 093112 (2005).
[Crossref]

2004 (1)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[Crossref] [PubMed]

2003 (3)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42(16), 3054–3062 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (2)

Abbiati, R.

A. Restelli, R. Abbiati, and A. Geraci, “Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications,” Rev. Sci. Instrum. 76(9), 093112 (2005).
[Crossref]

Alacam, B.

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
[Crossref]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Boas, D.

Boas, D. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[Crossref] [PubMed]

Braun, D.

Chance, B.

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Chen, Y.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Choi, C.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Choi, K.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Choi, M.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Cooper, C. E.

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Elwell, C. E.

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[Crossref] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Gao, F.

D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[Crossref]

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

Geraci, A.

A. Restelli, R. Abbiati, and A. Geraci, “Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications,” Rev. Sci. Instrum. 76(9), 093112 (2005).
[Crossref]

Gibson, A.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Gong, H.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hielscher, A. H.

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57(1), 182–189 (2008).
[Crossref]

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

Homma, K.

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

Hoshi, Y.

Y. Hoshi, “Towards the next generation of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci 369(1955), 4425–4439 (2011).
[Crossref] [PubMed]

Ichikawa, N.

Intes, X.

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Kawaguchi, H.

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Koizumi, H.

Lasker, J. M.

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57(1), 182–189 (2008).
[Crossref]

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

Lee, J.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Libchaber, A.

Licha, K.

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

Luo, Q.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Maki, A.

Marota, J. J. A.

Masciotti, J. M.

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57(1), 182–189 (2008).
[Crossref]

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Nioka, S.

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Olbrich, C.

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

Qin, D.-L.

D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[Crossref]

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Restelli, A.

A. Restelli, R. Abbiati, and A. Geraci, “Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications,” Rev. Sci. Instrum. 76(9), 093112 (2005).
[Crossref]

Ripoll, J.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Ryu, S. W.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Sato, H.

Schmitz, C. H.

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

Schoenecker, M.

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Siegel, A.

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Sun, B.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Sun, J.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Tanikawa, Y.

D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[Crossref]

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

Wang, B.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Yamada, Y.

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

Yamamoto, T.

Yamashita, Y.

Yazici, B.

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Zhang, L.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, “Instrumentation in diffuse optical tomography,” Photonics 1(1), 9–32 (2014).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

Zhao, H.-J.

D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[Crossref]

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE Trans. Instrum. Meas. (1)

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57(1), 182–189 (2008).
[Crossref]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
[Crossref]

J. Biomed. Opt. (1)

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[Crossref] [PubMed]

Med. Phys. (1)

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Neuroimage (3)

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of the target size and contrast on near infrared diffuse optical tomography – a comparison between featuered-data and full time-resolved schemes,” Opt. Quantum Electron. 37(13-15), 1287–1304 (2005).
[Crossref]

Philos. Trans. A Math Phys. Eng. Sci (1)

Y. Hoshi, “Towards the next generation of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci 369(1955), 4425–4439 (2011).
[Crossref] [PubMed]

Philos. Trans. A Math Phys. Eng. Sci. (2)

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

Photonics (1)

X. Zhang, “Instrumentation in diffuse optical tomography,” Photonics 1(1), 9–32 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

D.-L. Qin, H.-J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[Crossref]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007).
[Crossref] [PubMed]

Z. Zhang, B. Sun, H. Gong, L. Zhang, J. Sun, B. Wang, and Q. Luo, “A fast neuronal signal-sensitive continuous-wave near-infrared imaging system,” Rev. Sci. Instrum. 83(9), 094301 (2012).
[Crossref] [PubMed]

A. Restelli, R. Abbiati, and A. Geraci, “Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications,” Rev. Sci. Instrum. 76(9), 093112 (2005).
[Crossref]

Other (2)

W. Becker, Advanced Time-Correlated Signal Photon Counting Techniques (Springer-Verlag, 2005).

B. Saleh, Photoelectron Statistics (Springer-Verlag,1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the system.

Fig. 2
Fig. 2

Configuration of a lock-in channel.

Fig. 3
Fig. 3

Diagram of the multiple period accumulation: (a) conventional and (b) in-phase reference-weighted counting.

Fig. 4
Fig. 4

RWC-PSD hardware in the lock-in photon-counting module.

Fig. 5
Fig. 5

Comparison between the experimental and linearly-regressed data for the linearity and crosstalk evaluations, at the wavelengths of (a) 675 nm and (b) 785 nm.

Fig. 6
Fig. 6

Photon counting performances of the first PMT detector: (a) dark counts in conventional mode; (b) the 675-nm lock-in photon-counting stability; (c) the 785-nm lock-in photon-counting stability.

Fig. 7
Fig. 7

Experimental setup: (a) Sketch of the phantom; (b) Picture of the fiber holder with the optode arrangement.

Fig. 8
Fig. 8

Reconstructed images at (a) 675-nm and (b) 785-nm wavelength. The target-to-background contrasts double increased from the top to the bottom, and the gating-time double increased from the left to the right. The black circles in the images indicate the true target region.

Tables (4)

Tables Icon

Table 1 CIs for 675nm- and 785nm-mesurements

Tables Icon

Table 2 Assessments of anti-noise performances

Tables Icon

Table 3 Quantitative assessments of the reconstructed images at 675nm wavelength

Tables Icon

Table 4 Quantitative assessments of the reconstructed images at 785nm wavelength

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I s,d (i)= l=1 L S s,d (l) (i) + N s,d (i),
P[ a s,d (l) (i)=1] A s,d (l) sin[2π f l i / f s + ϕ s,d (l) ],
S s,d (l) (m,n)= a s,d (l) (i)δ[ i f s n(m1) N (l) ].
X s,d (l') = m=1 M (l) n=1 N (l) { [ l=1 L S s,d (l) (m,n) ]× I r (l') (n) } = l=1 L { n=1 N (l) [ m=1 M (l) P( a s,d (l) (n+(m1) N (l) )=1) ]× A r sin( 2π f l' n / f s ) } l=1 L { n=1 N (l) A s,d (l) sin(2π f l n / f s + ϕ s,d (l) )× A r sin( 2π f l' n / f s ) } = A r A s,d (l') cos ϕ s,d (l') ,
Y s,d (l') = m=1 M (l) n=1 N (l) { [ l=1 L S s,d (l) (i) ]× Q r (l') (n) } A r A s,d (l') sin ϕ s,d (l') .
A r A s,d (l') X s,d (l') 2 + Y s,d (l') 2 .

Metrics