Abstract

Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher’s discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy

Isaac O. Afara, Hayley Moody, Sanjleena Singh, Indira Prasadam, and Adekunle Oloyede
Biomed. Opt. Express 6(1) 144-154 (2015)

Optical spectral reflectance of human articular cartilage – relationships with tissue structure, composition and mechanical properties

Jussi Kinnunen, Simo Saarakkala, Markku Hauta-Kasari, Pasi Vahimaa, and Jukka S. Jurvelin
Biomed. Opt. Express 2(5) 1394-1402 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
    [Crossref] [PubMed]
  2. N. Ramakrishnan, Y. Xia, A. Bidthanapally, and M. Lu, “Determination of zonal boundaries in articular cartilage using infrared dichroism,” Appl. Spectrosc. 61(12), 1404–1409 (2007).
    [Crossref] [PubMed]
  3. J. Kinnunen, S. Saarakkala, M. Hauta-Kasari, P. Vahimaa, and J. S. Jurvelin, “Optical spectral reflectance of human articular cartilage - relationships with tissue structure, composition and mechanical properties,” Biomed. Opt. Express 2(5), 1394–1402 (2011).
    [Crossref] [PubMed]
  4. S. Zheng, Y. Xia, and F. Badar, “Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI,” Magn. Reson. Med. 65(3), 656–663 (2011).
    [Crossref] [PubMed]
  5. F. Redini, “Structure and regulation of proteoglycan expression in articular cartilage,” Pathol. Biol. (Paris) 49(4), 364–375 (2001).
    [Crossref] [PubMed]
  6. R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
    [Crossref] [PubMed]
  7. J. A. Buckwalter, J. Martin, and H. J. Mankin, “Synovial joint degeneration and the syndrome of osteoarthritis,” Instr. Course Lect. 49, 481–489 (2000).
    [PubMed]
  8. J. Yin, Y. Xia, and M. Lu, “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).
    [Crossref] [PubMed]
  9. K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
    [Crossref] [PubMed]
  10. X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
    [Crossref] [PubMed]
  11. A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
    [Crossref] [PubMed]
  12. E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
    [Crossref] [PubMed]
  13. L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
    [Crossref] [PubMed]
  14. J. Yin and Y. Xia, “Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 825–830 (2014).
    [Crossref] [PubMed]
  15. X. Chu, Molecular Spectroscopy Analytical Technology Combined with Chemometrics and its Applications (Chemical industry press, Beijing, China, 2011), Chap. 2.
  16. K. Baumann, “Cross-validation as the objective function for variable-selection techniques,” Trends Analyt. Chem. 22(6), 395–406 (2003).
    [Crossref]
  17. D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
    [Crossref] [PubMed]
  18. F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
    [Crossref] [PubMed]

2015 (1)

X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
[Crossref] [PubMed]

2014 (2)

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

J. Yin and Y. Xia, “Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 825–830 (2014).
[Crossref] [PubMed]

2013 (1)

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

2012 (1)

J. Yin, Y. Xia, and M. Lu, “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).
[Crossref] [PubMed]

2011 (3)

S. Zheng, Y. Xia, and F. Badar, “Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI,” Magn. Reson. Med. 65(3), 656–663 (2011).
[Crossref] [PubMed]

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

J. Kinnunen, S. Saarakkala, M. Hauta-Kasari, P. Vahimaa, and J. S. Jurvelin, “Optical spectral reflectance of human articular cartilage - relationships with tissue structure, composition and mechanical properties,” Biomed. Opt. Express 2(5), 1394–1402 (2011).
[Crossref] [PubMed]

2010 (1)

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

2007 (1)

2003 (1)

K. Baumann, “Cross-validation as the objective function for variable-selection techniques,” Trends Analyt. Chem. 22(6), 395–406 (2003).
[Crossref]

2001 (3)

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

F. Redini, “Structure and regulation of proteoglycan expression in articular cartilage,” Pathol. Biol. (Paris) 49(4), 364–375 (2001).
[Crossref] [PubMed]

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

2000 (2)

J. A. Buckwalter, J. Martin, and H. J. Mankin, “Synovial joint degeneration and the syndrome of osteoarthritis,” Instr. Course Lect. 49, 481–489 (2000).
[PubMed]

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

1998 (1)

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Ariad, S.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Ateshian, G. A.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Badar, F.

S. Zheng, Y. Xia, and F. Badar, “Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI,” Magn. Reson. Med. 65(3), 656–663 (2011).
[Crossref] [PubMed]

Bank, R. A.

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Baumann, K.

K. Baumann, “Cross-validation as the objective function for variable-selection techniques,” Trends Analyt. Chem. 22(6), 395–406 (2003).
[Crossref]

Bayliss, M. T.

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Bidthanapally, A.

Bijlsma, J. W.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Boutin, R. D.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Buckwalter, J. A.

J. A. Buckwalter, J. Martin, and H. J. Mankin, “Synovial joint degeneration and the syndrome of osteoarthritis,” Instr. Course Lect. 49, 481–489 (2000).
[PubMed]

Burstein, D.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Castro, K.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Chao, P. H.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Chao, Z.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Dong, L.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Du, J.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Fernández, L. A.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Gouwens, D.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Gray, M. L.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Gurung, R.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Gusakova, I.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Hauta-Kasari, M.

Hazewinkel, H. A.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Hung, C. T.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Intema, F.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Jaramillo, D.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Jurvelin, J. S.

Kapilushnik, J.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Kidder, L. H.

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

Kim, Y. J.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Kinnunen, J.

Lafeber, F. P.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Levin, I. W.

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

Lewis, E. N.

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

Lu, M.

J. Yin, Y. Xia, and M. Lu, “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).
[Crossref] [PubMed]

N. Ramakrishnan, Y. Xia, A. Bidthanapally, and M. Lu, “Determination of zonal boundaries in articular cartilage using infrared dichroism,” Appl. Spectrosc. 61(12), 1404–1409 (2007).
[Crossref] [PubMed]

Madariaga, J. M.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Mankin, H. J.

J. A. Buckwalter, J. Martin, and H. J. Mankin, “Synovial joint degeneration and the syndrome of osteoarthritis,” Instr. Course Lect. 49, 481–489 (2000).
[PubMed]

Mao, Z. H.

X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
[Crossref] [PubMed]

Maroudas, A.

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Martin, J.

J. A. Buckwalter, J. Martin, and H. J. Mankin, “Synovial joint degeneration and the syndrome of osteoarthritis,” Instr. Course Lect. 49, 481–489 (2000).
[PubMed]

Martínez-Arkarazo, I.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Mastbergen, S. C.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Mauck, R. L.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Mordechai, S.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Nisky, I.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Olivares, M.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Ostrovsky, E.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Pérez-Alonso, M.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Potter, K.

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

Ramakrishnan, N.

Redini, F.

F. Redini, “Structure and regulation of proteoglycan expression in articular cartilage,” Pathol. Biol. (Paris) 49(4), 364–375 (2001).
[Crossref] [PubMed]

Saarakkala, S.

Sarmiento, A.

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Scott, K. T.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Shi, J.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Soltz, M. A.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Spencer, R. G.

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

Stock, K. W.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Sun, X.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Tekoppele, J. M.

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Vahimaa, P.

Valhmu, W. B.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Velyvis, J.

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

Wang, C. C.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Weinans, H.

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Wong, D. D.

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

Wu, J.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Xia, Y.

X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
[Crossref] [PubMed]

J. Yin and Y. Xia, “Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 825–830 (2014).
[Crossref] [PubMed]

J. Yin, Y. Xia, and M. Lu, “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).
[Crossref] [PubMed]

S. Zheng, Y. Xia, and F. Badar, “Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI,” Magn. Reson. Med. 65(3), 656–663 (2011).
[Crossref] [PubMed]

N. Ramakrishnan, Y. Xia, A. Bidthanapally, and M. Lu, “Determination of zonal boundaries in articular cartilage using infrared dichroism,” Appl. Spectrosc. 61(12), 1404–1409 (2007).
[Crossref] [PubMed]

Xu, Y.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Yin, J.

J. Yin and Y. Xia, “Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 825–830 (2014).
[Crossref] [PubMed]

J. Yin, Y. Xia, and M. Lu, “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).
[Crossref] [PubMed]

Yin, J. H.

X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
[Crossref] [PubMed]

Zelig, U.

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Zhang, S.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Zhang, X. X.

X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
[Crossref] [PubMed]

Zhang, Y.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Zheng, J.

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

Zheng, S.

S. Zheng, Y. Xia, and F. Badar, “Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI,” Magn. Reson. Med. 65(3), 656–663 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

A. Sarmiento, M. Pérez-Alonso, M. Olivares, K. Castro, I. Martínez-Arkarazo, L. A. Fernández, and J. M. Madariaga, “Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis,” Anal. Bioanal. Chem. 399(10), 3601–3611 (2011).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Arthritis Rheum. (1)

K. Potter, L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer, “Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging,” Arthritis Rheum. 44(4), 846–855 (2001).
[Crossref] [PubMed]

Biochem. J. (1)

R. A. Bank, M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele, “Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage,” Biochem. J. 330(1), 345–351 (1998).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Biomed. Eng. (1)

E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, and J. Kapilushnik, “Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood,” IEEE Trans. Biomed. Eng. 60(2), 343–353 (2013).
[Crossref] [PubMed]

Instr. Course Lect. (1)

J. A. Buckwalter, J. Martin, and H. J. Mankin, “Synovial joint degeneration and the syndrome of osteoarthritis,” Instr. Course Lect. 49, 481–489 (2000).
[PubMed]

J. Biomech. Eng. (1)

R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian, “Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels,” J. Biomech. Eng. 122(3), 252–260 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

X. X. Zhang, J. H. Yin, Z. H. Mao, and Y. Xia, “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20(6), 060501 (2015).
[Crossref] [PubMed]

Magn. Reson. Med. (2)

D. Burstein, J. Velyvis, K. T. Scott, K. W. Stock, Y. J. Kim, D. Jaramillo, R. D. Boutin, and M. L. Gray, “Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage,” Magn. Reson. Med. 45(1), 36–41 (2001).
[Crossref] [PubMed]

S. Zheng, Y. Xia, and F. Badar, “Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI,” Magn. Reson. Med. 65(3), 656–663 (2011).
[Crossref] [PubMed]

Osteoarthritis Cartilage (1)

F. Intema, H. A. Hazewinkel, D. Gouwens, J. W. Bijlsma, H. Weinans, F. P. Lafeber, and S. C. Mastbergen, “In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model,” Osteoarthritis Cartilage 18(5), 691–698 (2010).
[Crossref] [PubMed]

Pathol. Biol. (Paris) (1)

F. Redini, “Structure and regulation of proteoglycan expression in articular cartilage,” Pathol. Biol. (Paris) 49(4), 364–375 (2001).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

J. Yin, Y. Xia, and M. Lu, “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).
[Crossref] [PubMed]

L. Dong, X. Sun, Z. Chao, S. Zhang, J. Zheng, R. Gurung, J. Du, J. Shi, Y. Xu, Y. Zhang, and J. Wu, “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).
[Crossref] [PubMed]

J. Yin and Y. Xia, “Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 825–830 (2014).
[Crossref] [PubMed]

Trends Analyt. Chem. (1)

K. Baumann, “Cross-validation as the objective function for variable-selection techniques,” Trends Analyt. Chem. 22(6), 395–406 (2003).
[Crossref]

Other (1)

X. Chu, Molecular Spectroscopy Analytical Technology Combined with Chemometrics and its Applications (Chemical industry press, Beijing, China, 2011), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The infrared absorption spectra extracted from a healthy cartilage section.
Fig. 2
Fig. 2 FTIR images of total absorption (a), 1338 cm−1 (b) and 1072 cm−1 (c), and visible images (d) of healthy and OA cartilage section. The left and right images are from a healthy and OA cartilage (2-year ACLT) section, respectively. The absorption max for (a), (b) and (c) are 1.3, 1.3 and 1.8, respectively.
Fig. 3
Fig. 3 The scatter plot of PC1 and PC2 in score matrix calculated by PCA, showing 50 spectra that were used for constructing FDA model. The solid triangles and circles represent the spectra from healthy (▲) and OA (●) group, respectively.

Tables (2)

Tables Icon

Table 1 The principal component cumulative variance

Tables Icon

Table 2 The result of FDA

Metrics