Abstract

We have developed a novel, light activated drug delivery containers, based on spiropyran doped liquid crystal micro spheres. Upon exposure to UV/violet light, the spiropyran molecules entrapped inside the nematic liquid crystal micro spheres, interconvert from the hydrophobic, oil soluble form, to the hydrophilic, water soluble merocyanine one, which stimulates the translocation of the merocyanine molecules across the nematic liquid crystal-water barrier and results their homogeneous distribution throughout in an aqueous environment. Light controllable switching property and extremely high solubility of spiropyran in the nematic liquid crystal, promise to elaborate a novel and reliable vehicles for the drug delivery systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy

Nana Li, Xuanyuan Wen, Jing Liu, Baoju Wang, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 6(4) 1161-1171 (2016)

Light-controllable linear dichroism in nematics

Gia Petriashvili, Ridha Hamdi, Maria Penelope De Santo, Ramla Gary, and Riccardo Barberi
Appl. Opt. 54(28) 8293-8297 (2015)

Photo-orientation of nematic liquid crystal without preliminary cell surface treatment

Sergey A. Shvetsov, Alexander V. Emelyanenko, Miron A. Bugakov, Natalia I. Boiko, and Victor Ya. Zyryanov
Opt. Mater. Express 9(6) 2595-2600 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Thakor and S. S. Gambhir, “Nanooncology: the future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
    [Crossref] [PubMed]
  2. S. Shah, P. K. Sasmal, and K.-B. Lee, “Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 2(44), 7685–7693 (2014).
    [Crossref] [PubMed]
  3. B. P. Timko, T. Dvir, and D. S. Kohane, “Remotely triggerable drug delivery systems,” Adv. Mater. 22(44), 4925–4943 (2010).
    [Crossref] [PubMed]
  4. B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
    [Crossref] [PubMed]
  5. K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
    [Crossref] [PubMed]
  6. T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
    [Crossref] [PubMed]
  7. C. S. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
    [Crossref] [PubMed]
  8. S. Hernot and A. L. Klibanov, “Microbubbles in ultrasound-triggered drug and gene delivery,” Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008).
    [Crossref] [PubMed]
  9. A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
    [Crossref]
  10. N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
    [Crossref] [PubMed]
  11. S. J. Leung and M. Romanowski, “Light-activated content release from liposomes,” Theranostics 2(10), 1020–1036 (2012).
    [Crossref] [PubMed]
  12. R. Klajn, “Spiropyran-based dynamic materials,” Chem. Soc. Rev. 43(1), 148–184 (2014).
    [Crossref] [PubMed]
  13. S. Lyergar and M. C. Biewer, “Solid-state interactions in photonic host-guest inclusion complexes,” Cryst. Growth Des. 5(6), 2043–2045 (2005).
    [Crossref]
  14. G. Petriashvili, M. P. De Santo, K. Chubinidze, R. Hamdi, and R. Barberi, “Visual micro-thermometers for nanoparticles photo-thermal conversion,” Opt. Express 22(12), 14705–14711 (2014).
    [Crossref] [PubMed]

2014 (4)

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

S. Shah, P. K. Sasmal, and K.-B. Lee, “Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 2(44), 7685–7693 (2014).
[Crossref] [PubMed]

R. Klajn, “Spiropyran-based dynamic materials,” Chem. Soc. Rev. 43(1), 148–184 (2014).
[Crossref] [PubMed]

G. Petriashvili, M. P. De Santo, K. Chubinidze, R. Hamdi, and R. Barberi, “Visual micro-thermometers for nanoparticles photo-thermal conversion,” Opt. Express 22(12), 14705–14711 (2014).
[Crossref] [PubMed]

2013 (1)

A. S. Thakor and S. S. Gambhir, “Nanooncology: the future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

2012 (2)

N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
[Crossref] [PubMed]

S. J. Leung and M. Romanowski, “Light-activated content release from liposomes,” Theranostics 2(10), 1020–1036 (2012).
[Crossref] [PubMed]

2011 (3)

K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
[Crossref] [PubMed]

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

C. S. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
[Crossref] [PubMed]

2010 (1)

B. P. Timko, T. Dvir, and D. S. Kohane, “Remotely triggerable drug delivery systems,” Adv. Mater. 22(44), 4925–4943 (2010).
[Crossref] [PubMed]

2008 (1)

S. Hernot and A. L. Klibanov, “Microbubbles in ultrasound-triggered drug and gene delivery,” Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008).
[Crossref] [PubMed]

2007 (1)

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

2005 (1)

S. Lyergar and M. C. Biewer, “Solid-state interactions in photonic host-guest inclusion complexes,” Cryst. Growth Des. 5(6), 2043–2045 (2005).
[Crossref]

Arruebo, M.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Barberi, R.

Bhatia, S. N.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

Biewer, M. C.

S. Lyergar and M. C. Biewer, “Solid-state interactions in photonic host-guest inclusion complexes,” Cryst. Growth Des. 5(6), 2043–2045 (2005).
[Crossref]

Burdick, J. A.

K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
[Crossref] [PubMed]

Cheng, F.-Y.

N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
[Crossref] [PubMed]

Chubinidze, K.

De Santo, M. P.

Derfus, A. M.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

Duza, T.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

Dvir, T.

B. P. Timko, T. Dvir, and D. S. Kohane, “Remotely triggerable drug delivery systems,” Adv. Mater. 22(44), 4925–4943 (2010).
[Crossref] [PubMed]

Fan, N.-C.

N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
[Crossref] [PubMed]

Gambhir, S. S.

A. S. Thakor and S. S. Gambhir, “Nanooncology: the future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

Gomez, L.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Goya, G. F.

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Hamdi, R.

Harris, T. J.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

Hernot, S.

S. Hernot and A. L. Klibanov, “Microbubbles in ultrasound-triggered drug and gene delivery,” Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008).
[Crossref] [PubMed]

Ho, J. A.

N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
[Crossref] [PubMed]

Hoare, T.

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Hribar, K. C.

K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
[Crossref] [PubMed]

Irusta, S.

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Klajn, R.

R. Klajn, “Spiropyran-based dynamic materials,” Chem. Soc. Rev. 43(1), 148–184 (2014).
[Crossref] [PubMed]

Klibanov, A. L.

S. Hernot and A. L. Klibanov, “Microbubbles in ultrasound-triggered drug and gene delivery,” Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008).
[Crossref] [PubMed]

Kohane, D. S.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

B. P. Timko, T. Dvir, and D. S. Kohane, “Remotely triggerable drug delivery systems,” Adv. Mater. 22(44), 4925–4943 (2010).
[Crossref] [PubMed]

Kumar, C. S.

C. S. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
[Crossref] [PubMed]

Langer, R.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Lau, S.

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Lee, D.

K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
[Crossref] [PubMed]

Lee, K.-B.

S. Shah, P. K. Sasmal, and K.-B. Lee, “Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 2(44), 7685–7693 (2014).
[Crossref] [PubMed]

Lee, M. H.

K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
[Crossref] [PubMed]

Leung, S. J.

S. J. Leung and M. Romanowski, “Light-activated content release from liposomes,” Theranostics 2(10), 1020–1036 (2012).
[Crossref] [PubMed]

Lin, D.

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Lyergar, S.

S. Lyergar and M. C. Biewer, “Solid-state interactions in photonic host-guest inclusion complexes,” Cryst. Growth Des. 5(6), 2043–2045 (2005).
[Crossref]

McAlvin, J. B.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Mizrahi, B.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Mohammad, F.

C. S. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
[Crossref] [PubMed]

Okonkwo, O. S.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Petriashvili, G.

Romanowski, M.

S. J. Leung and M. Romanowski, “Light-activated content release from liposomes,” Theranostics 2(10), 1020–1036 (2012).
[Crossref] [PubMed]

Ruoslahti, E.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

Santamaria, J.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Sasmal, P. K.

S. Shah, P. K. Sasmal, and K.-B. Lee, “Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 2(44), 7685–7693 (2014).
[Crossref] [PubMed]

Shah, S.

S. Shah, P. K. Sasmal, and K.-B. Lee, “Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 2(44), 7685–7693 (2014).
[Crossref] [PubMed]

Shankarappa, S. A.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Stefanescu, C. F.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Thakor, A. S.

A. S. Thakor and S. S. Gambhir, “Nanooncology: the future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

Timko, B. P.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

B. P. Timko, T. Dvir, and D. S. Kohane, “Remotely triggerable drug delivery systems,” Adv. Mater. 22(44), 4925–4943 (2010).
[Crossref] [PubMed]

Vecchio, K. S.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

von Maltzahn, G.

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

Yeh, C.-S.

N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
[Crossref] [PubMed]

Zhu, A.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Zhu, J.

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

ACS Nano (1)

K. C. Hribar, M. H. Lee, D. Lee, and J. A. Burdick, “Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites,” ACS Nano 5(4), 2948–2956 (2011).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (2)

C. S. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
[Crossref] [PubMed]

S. Hernot and A. L. Klibanov, “Microbubbles in ultrasound-triggered drug and gene delivery,” Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008).
[Crossref] [PubMed]

Adv. Mater. (2)

A. M. Derfus, G. von Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, “Remotely triggered release from magnetic nanoparticles,” Adv. Mater. 19(22), 3932–3936 (2007).
[Crossref]

B. P. Timko, T. Dvir, and D. S. Kohane, “Remotely triggerable drug delivery systems,” Adv. Mater. 22(44), 4925–4943 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

N.-C. Fan, F.-Y. Cheng, J. A. Ho, and C.-S. Yeh, “Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule,” Angew. Chem. Int. Ed. Engl. 51(35), 8806–8810 (2012).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

A. S. Thakor and S. S. Gambhir, “Nanooncology: the future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

R. Klajn, “Spiropyran-based dynamic materials,” Chem. Soc. Rev. 43(1), 148–184 (2014).
[Crossref] [PubMed]

Cryst. Growth Des. (1)

S. Lyergar and M. C. Biewer, “Solid-state interactions in photonic host-guest inclusion complexes,” Cryst. Growth Des. 5(6), 2043–2045 (2005).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

S. Shah, P. K. Sasmal, and K.-B. Lee, “Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery,” J. Mater. Chem. B Mater. Biol. Med. 2(44), 7685–7693 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, “Magnetically triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release,” Nano Lett. 11(3), 1395–1400 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

B. P. Timko, M. Arruebo, S. A. Shankarappa, J. B. McAlvin, O. S. Okonkwo, B. Mizrahi, C. F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D. S. Kohane, “Near-infrared-actuated devices for remotely controlled drug delivery,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1349–1354 (2014).
[Crossref] [PubMed]

Theranostics (1)

S. J. Leung and M. Romanowski, “Light-activated content release from liposomes,” Theranostics 2(10), 1020–1036 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SP-NLC macro sphere in water, before the laser irradiation (a), and after 4s of laser irradiation (b).
Fig. 2
Fig. 2 Polarizing microscope observation of SP-NLC micro spheres emulsified in an aqueous medium (a), a schematic representation of the spatial distribution of the molecules inside NLC micro sphere (b) which results a radial director profile with a point defect in the center of the micro sphere. Images of MC-NLC micro sphere upon irradiation of UV/Violet light in the transmittance (c), and reflectance (d) modes respectively.
Fig. 3
Fig. 3 Bottles with SP-NLC-water emulsions: (a) exposure time 0 s. shaking time 10 s. (b) exposure time 4 s. shaking time 10 s. (c) exposure time 8 s. shaking time 10 s. (d) exposure time12 s. shaking time 10 s. (e) exposure time 16 s. shaking time 10 s.
Fig. 4
Fig. 4 Light absorption as a function of the exposure time for the five optical cells filled with SP-NLC-water and MC-NLC-water emulsions (a). A fluorescence emission from MC-NLC micro spheres (b).
Fig. 5
Fig. 5 Images of SP-NLC-water emulsion, before (a), and after (b), exposure to the laser beam. Distribution of MC-NLC micro spheres inside the optical cell, observed under the fluorescent microscope (c,d).
Fig. 6
Fig. 6 Schematic of light controlled drug release. SP-NLC micro sphere before (a) and after (b) UV activation.

Metrics