Abstract

Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally encoded spectral imaging

Avraham Abramov, Limor Minai, and Dvir Yelin
Opt. Express 19(7) 6913-6922 (2011)

Volumetric sub-surface imaging using spectrally encoded endoscopy

D. Yelin, B. E. Bouma, and G. J. Tearney
Opt. Express 16(3) 1748-1757 (2008)

Spectrally encoded miniature endoscopy

G. J. Tearney, M. Shishkov, and B. E. Bouma
Opt. Lett. 27(6) 412-414 (2002)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
    [Crossref] [PubMed]
  2. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
    [Crossref] [PubMed]
  3. D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
    [Crossref] [PubMed]
  4. D. Yelin, B. E. Bouma, J. J. Rosowsky, and G. J. Tearney, “Doppler imaging using spectrally-encoded endoscopy,” Opt. Express 16(19), 14836–14844 (2008).
    [Crossref] [PubMed]
  5. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
    [Crossref] [PubMed]
  6. A. Abramov, L. Minai, and D. Yelin, “Multiple-channel spectrally encoded imaging,” Opt. Express 18(14), 14745–14751 (2010).
    [Crossref] [PubMed]
  7. G. Engel, H. Genish, M. Rosenbluh, and D. Yelin, “Dual-channel spectrally encoded endoscopic probe,” Biomed. Opt. Express 3(8), 1855–1864 (2012).
    [Crossref] [PubMed]
  8. A. Zeidan and D. Yelin, “Miniature forward-viewing spectrally encoded endoscopic probe,” Opt. Lett. 39(16), 4871–4874 (2014).
    [Crossref] [PubMed]
  9. D. Kang, D. Yelin, B. E. Bouma, and G. J. Tearney, “Spectrally-encoded color imaging,” Opt. Express 17(17), 15239–15247 (2009).
    [Crossref] [PubMed]
  10. N. Gat, “Imaging spectroscopy using tunable filters: a review,” in AeroSense 2000, International Society for Optics and Photonics, 50–64 (2000).
  11. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt. 43(10), 2079–2088 (2004).
    [Crossref] [PubMed]
  12. Y. Bar-Ilan and D. Yelin, “Spectral imaging using single-axis spectrally dispersed illumination,” Opt. Lett. 39(17), 5177–5179 (2014).
    [Crossref] [PubMed]
  13. A. A. Bunaciu, Ş. Fleschin, and H. Y. Aboul-Enein, “Biomedical Investigations Using Fourier Transform-Infrared Microspectroscopy,” Crit. Rev. Anal. Chem. 44(3), 270–276 (2014).
    [Crossref] [PubMed]
  14. A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
    [Crossref] [PubMed]
  15. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt. 46(10), 1896–1910 (2007).
    [Crossref] [PubMed]
  16. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
    [Crossref] [PubMed]
  17. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  18. E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
    [Crossref] [PubMed]
  19. Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
    [Crossref] [PubMed]
  20. A. Abramov, L. Minai, and D. Yelin, “Spectrally encoded spectral imaging,” Opt. Express 19(7), 6913–6922 (2011).
    [Crossref] [PubMed]
  21. H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).
    [Crossref]
  22. M. Anderson, S. Chandrasekar, R. Motta, and M. Stokes, “A standard default color space for the internet: srgb,” Technical report, International Color Consortium (1996).
  23. S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html 15 (1999).

2014 (3)

2012 (1)

2011 (2)

A. Abramov, L. Minai, and D. Yelin, “Spectrally encoded spectral imaging,” Opt. Express 19(7), 6913–6922 (2011).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

2010 (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

A. Abramov, L. Minai, and D. Yelin, “Multiple-channel spectrally encoded imaging,” Opt. Express 18(14), 14745–14751 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
[Crossref] [PubMed]

D. Yelin, B. E. Bouma, J. J. Rosowsky, and G. J. Tearney, “Doppler imaging using spectrally-encoded endoscopy,” Opt. Express 16(19), 14836–14844 (2008).
[Crossref] [PubMed]

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

2004 (3)

2002 (1)

1997 (1)

H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).
[Crossref]

Aboul-Enein, H. Y.

A. A. Bunaciu, Ş. Fleschin, and H. Y. Aboul-Enein, “Biomedical Investigations Using Fourier Transform-Infrared Microspectroscopy,” Crit. Rev. Anal. Chem. 44(3), 270–276 (2014).
[Crossref] [PubMed]

Abramov, A.

Arimura, Y.

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Bar-Ilan, Y.

Bedard, N.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Bouma, B. E.

Brill, M. H.

H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).
[Crossref]

Bunaciu, A. A.

A. A. Bunaciu, Ş. Fleschin, and H. Y. Aboul-Enein, “Biomedical Investigations Using Fourier Transform-Infrared Microspectroscopy,” Crit. Rev. Anal. Chem. 44(3), 270–276 (2014).
[Crossref] [PubMed]

Carroll, R. E.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Chung, A.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

Dominitz, J. A.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Endo, T.

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Engel, G.

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Fairman, H. S.

H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).
[Crossref]

Farkas, D. L.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

Fleschin, S.

A. A. Bunaciu, Ş. Fleschin, and H. Y. Aboul-Enein, “Biomedical Investigations Using Fourier Transform-Infrared Microspectroscopy,” Crit. Rev. Anal. Chem. 44(3), 270–276 (2014).
[Crossref] [PubMed]

Gao, L.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Gebhart, S. C.

Genish, H.

Haaland, D. M.

Hamamoto, Y.

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Hemmendinger, H.

H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).
[Crossref]

Imai, K.

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Johnston, R. S.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Kang, D.

Karlan, S.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

Kester, R. T.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Kimmey, M. B.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Lindsley, E.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

Melville, C. D.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Minai, L.

Motz, J. T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

Nosho, K.

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

Rosenbluh, M.

Rosowsky, J. J.

Sato, M.

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Seitz, S. M.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

Shishkov, M.

Sinclair, M. B.

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Tearney, G. J.

Thompson, R. C.

Timlin, J. A.

Tkaczyk, T. S.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Wachsmann-Hogiu, S.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

Werner-Washburne, M.

White, W. M.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

Yelin, D.

Y. Bar-Ilan and D. Yelin, “Spectral imaging using single-axis spectrally dispersed illumination,” Opt. Lett. 39(17), 5177–5179 (2014).
[Crossref] [PubMed]

A. Zeidan and D. Yelin, “Miniature forward-viewing spectrally encoded endoscopic probe,” Opt. Lett. 39(16), 4871–4874 (2014).
[Crossref] [PubMed]

G. Engel, H. Genish, M. Rosenbluh, and D. Yelin, “Dual-channel spectrally encoded endoscopic probe,” Biomed. Opt. Express 3(8), 1855–1864 (2012).
[Crossref] [PubMed]

A. Abramov, L. Minai, and D. Yelin, “Spectrally encoded spectral imaging,” Opt. Express 19(7), 6913–6922 (2011).
[Crossref] [PubMed]

A. Abramov, L. Minai, and D. Yelin, “Multiple-channel spectrally encoded imaging,” Opt. Express 18(14), 14745–14751 (2010).
[Crossref] [PubMed]

D. Kang, D. Yelin, B. E. Bouma, and G. J. Tearney, “Spectrally-encoded color imaging,” Opt. Express 17(17), 15239–15247 (2009).
[Crossref] [PubMed]

D. Yelin, B. E. Bouma, J. J. Rosowsky, and G. J. Tearney, “Doppler imaging using spectrally-encoded endoscopy,” Opt. Express 16(19), 14836–14844 (2008).
[Crossref] [PubMed]

D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
[Crossref] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
[Crossref] [PubMed]

Yun, S. H.

Zeidan, A.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Color Res. Appl. (1)

H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).
[Crossref]

Crit. Rev. Anal. Chem. (1)

A. A. Bunaciu, Ş. Fleschin, and H. Y. Aboul-Enein, “Biomedical Investigations Using Fourier Transform-Infrared Microspectroscopy,” Crit. Rev. Anal. Chem. 44(3), 270–276 (2014).
[Crossref] [PubMed]

Cytometry A (1)

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilities,” Cytometry A 69(3), 142–146 (2006).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

J. Gastroenterol. (1)

Y. Hamamoto, T. Endo, K. Nosho, Y. Arimura, M. Sato, and K. Imai, “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” J. Gastroenterol. 39(1), 14–20 (2004).
[Crossref] [PubMed]

Nature (1)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Other (3)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” in AeroSense 2000, International Society for Optics and Photonics, 50–64 (2000).

M. Anderson, S. Chandrasekar, R. Motta, and M. Stokes, “A standard default color space for the internet: srgb,” Technical report, International Color Consortium (1996).

S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html 15 (1999).

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (1396 KB)      Imaging a cylindrical target using the forward-viewing SEE probe.
» Visualization 2: MP4 (1720 KB)      SEE imaging within a 4.5-mm-diameter black-and-white cylindrical USAF resolution target. Video frame rate is x55 faster than real-time.
» Visualization 3: MP4 (1565 KB)      Spectral imaging within a 4.5-mm-diameter cylindrical color printed target. Video frame rate is x55 faster than real-time.
» Visualization 4: MP4 (3077 KB)      Spectral imaging of a turkey artery. Video frame rate is x55 faster than real-time.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A photo of the benchtop SEE setup. Inset: high-magnification view of the probe. (b) Schematic illustration of the system. (c) Schematic side and front views of the spectrally encoded line relative to the imaged cylinder. MM - Multimode fiber; SM - Single-mode fiber.

Fig. 2
Fig. 2

A series of images acquired with the SEE forward-viewing probe during probe rotation and axial forward motion through a cylindrical test target. The axial step size between the images (left to right, top to bottom) is 1.5 mm. Top-left corner: the test pattern that was printed and rolled into a 4.5 mm diameter cylinder. Bottom-right corner: a high-magnification view of a region of interest marked by dashed square. White arrows point to the digits ‘2’ and ‘4’. For scale reference, the dimensions of each dark bar next to digit ‘4’ are 2 mm × 0.4 mm.

Fig. 3
Fig. 3

(a) A series of images from the SEE forward-viewing probe within a cylindrical color target (top-left panel). Axial step size between each frame (left to right, top to bottom) was 2.1 mm. For scale reference, the dimensions of each individual bar next to the digits are 2.3 mm × 0.46 mm. (b) Measured spectra from the different color patterns in (a). Solid lines represent spectra measured by a commercial spectrometer. (c) A reconstructed color image (top panel) and an overlay of the color on a reflectance image (bottom panel).

Fig. 4
Fig. 4

(a) Turkey artery (top-left panel) imaging using SEE. D – tissue damage; I - ink spot; B - burned tissue. Green and red arrows mark the high absorption rings around 540 nm and 570 nm. The diameter of the ink spot (I) is approximately 1 mm. (b) Averaged artery reflectance spectrum (squares) measured from 21 frames, compared to the oxyhemoglobin absorption spectrum (gray solid line) from Ref [23] and a reflectance spectrum measured by a commercial spectrometer (black solid line).

Metrics