Abstract

Acoustic-resolution photoacoustic microscopy (ARPAM) provides a spatial resolution on the order of tens of micrometers, and is becoming an essential tool for imaging fine structures, such as the subcutaneous microvasculature. High lateral resolution of ARPAM is achieved using high numerical aperture (NA) of acoustic transducer; however, the depth of focus and working distance will be deteriorated correspondingly, thus sacrificing the imaging range and accessible depth. The axial resolution of ARPAM is limited by the transducer’s bandwidth. In this work, we develop deconvolution ARPAM (D-ARPAM) in three dimensions that can improve the lateral resolution by 1.8 and 3.7 times and the axial resolution by 1.7 and 2.7 times, depending on the adopted criteria, using a 20-MHz focused transducer without physically increasing its NA and bandwidth. The resolution enhancement in three dimensions by D-ARPAM is also demonstrated by in vivo imaging of the microvasculature of a chick embryo. The proposed D-ARPAM has potential for biomedical imaging that simultaneously requires high spatial resolution, extended imaging range, and long accessible depth.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution

De Cai, Zhongfei Li, Yao Li, Zhendong Guo, and Sung-Liang Chen
Opt. Express 25(2) 1421-1434 (2017)

Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor

Sung-Liang Chen, Joseph Burnett, Duxin Sun, Xunbin Wei, Zhixing Xie, and Xueding Wang
Biomed. Opt. Express 4(11) 2657-2666 (2013)

Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy

Zilin Deng, Xiaoquan Yang, Hui Gong, and Qingming Luo
Opt. Express 20(7) 7555-7563 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  4. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  5. S.-L. Chen, Z. Xie, P. L. Carson, X. Wang, and L. J. Guo, “In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy,” Opt. Lett. 36(20), 4017–4019 (2011).
    [Crossref] [PubMed]
  6. M. Heijblom, D. Piras, W. Xia, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
    [Crossref] [PubMed]
  7. L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
    [Crossref] [PubMed]
  8. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
    [Crossref] [PubMed]
  9. P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
    [Crossref] [PubMed]
  10. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
    [Crossref] [PubMed]
  11. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  12. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
    [Crossref] [PubMed]
  13. Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
    [Crossref] [PubMed]
  14. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
    [Crossref] [PubMed]
  15. I. M. Braverman, “The cutaneous microcirculation,” J. Investig. Dermatol. Symp. Proc. 5(1), 3–9 (2000).
    [Crossref] [PubMed]
  16. G. E. Koehl, A. Gaumann, and E. K. Geissler, “Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies,” Clin. Exp. Metastasis 26(4), 329–344 (2009).
    [Crossref] [PubMed]
  17. S.-L. Chen, J. Burnett, D. Sun, X. Wei, Z. Xie, and X. Wang, “Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor,” Biomed. Opt. Express 4(11), 2657–2666 (2013).
    [Crossref] [PubMed]
  18. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
    [Crossref] [PubMed]
  19. M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [Crossref] [PubMed]
  20. Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
    [Crossref]
  21. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012).
    [Crossref] [PubMed]
  22. M. Omar, D. Soliman, J. Gateau, and V. Ntziachristos, “Ultrawideband reflection-mode optoacoustic mesoscopy,” Opt. Lett. 39(13), 3911–3914 (2014).
    [Crossref] [PubMed]
  23. H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
    [Crossref]
  24. D. Cai, Z. Li, and S.-L. Chen, “Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique,” Chin. Opt. Lett. 13(10), 101101 (2015).
    [Crossref]
  25. A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
    [Crossref] [PubMed]
  26. O. Michailovich and A. Tannenbaum, “Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach,” IEEE Trans. Image Process. 16(12), 3005–3019 (2007).
    [Crossref] [PubMed]
  27. C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(2), 271–280 (2012).
    [Crossref] [PubMed]
  28. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
    [Crossref] [PubMed]
  29. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [Crossref] [PubMed]
  30. Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
    [Crossref] [PubMed]
  31. C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE Photonics J. 2(1), 57–66 (2010).
    [Crossref] [PubMed]
  32. T. Jetzfellner and V. Ntziachristos, “Performance of blind deconvolution in optoacoustic tomography,” J. Innov. Opt. Health Sci. 4(4), 385–393 (2011).
    [Crossref]
  33. J. Chen, R. Lin, H. Wang, J. Meng, H. Zheng, and L. Song, “Blind-deconvolution optical-resolution photoacoustic microscopy in vivo,” Opt. Express 21(6), 7316–7327 (2013).
    [Crossref] [PubMed]
  34. L. Zhu, L. Li, L. Gao, and L. V. Wang, “Multi-view optical resolution photoacoustic microscopy,” Optica 1(4), 217–222 (2014).
    [Crossref] [PubMed]
  35. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
    [Crossref]
  36. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
    [Crossref]
  37. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36(8), 1766–1775 (1997).
    [Crossref] [PubMed]
  38. H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
    [PubMed]

2015 (2)

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

D. Cai, Z. Li, and S.-L. Chen, “Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique,” Chin. Opt. Lett. 13(10), 101101 (2015).
[Crossref]

2014 (5)

M. Omar, D. Soliman, J. Gateau, and V. Ntziachristos, “Ultrawideband reflection-mode optoacoustic mesoscopy,” Opt. Lett. 39(13), 3911–3914 (2014).
[Crossref] [PubMed]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

L. Zhu, L. Li, L. Gao, and L. V. Wang, “Multi-view optical resolution photoacoustic microscopy,” Optica 1(4), 217–222 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (6)

C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(2), 271–280 (2012).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

M. Heijblom, D. Piras, W. Xia, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (4)

S.-L. Chen, Z. Xie, P. L. Carson, X. Wang, and L. J. Guo, “In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy,” Opt. Lett. 36(20), 4017–4019 (2011).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[Crossref]

T. Jetzfellner and V. Ntziachristos, “Performance of blind deconvolution in optoacoustic tomography,” J. Innov. Opt. Health Sci. 4(4), 385–393 (2011).
[Crossref]

2010 (3)

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE Photonics J. 2(1), 57–66 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
[PubMed]

2009 (3)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

G. E. Koehl, A. Gaumann, and E. K. Geissler, “Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies,” Clin. Exp. Metastasis 26(4), 329–344 (2009).
[Crossref] [PubMed]

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[Crossref] [PubMed]

2008 (2)

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

2007 (1)

O. Michailovich and A. Tannenbaum, “Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach,” IEEE Trans. Image Process. 16(12), 3005–3019 (2007).
[Crossref] [PubMed]

2006 (2)

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2005 (2)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

2004 (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

2000 (2)

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

I. M. Braverman, “The cutaneous microcirculation,” J. Investig. Dermatol. Symp. Proc. 5(1), 3–9 (2000).
[Crossref] [PubMed]

1997 (1)

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

1972 (1)

Andrews, M.

Arfelli, F.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Biggs, D. S. C.

Boppart, S. A.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Braverman, I. M.

I. M. Braverman, “The cutaneous microcirculation,” J. Investig. Dermatol. Symp. Proc. 5(1), 3–9 (2000).
[Crossref] [PubMed]

Burnett, J.

Butcher, J. T.

H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
[PubMed]

Cai, D.

Cai, X.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Cantatore, G.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Carson, P. L.

Castelli, E.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Chen, J.

Chen, Q.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Chen, R.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Chen, S.-L.

Chen, Z.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Cheng, J.-X.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Deng, Z.

Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[Crossref]

Estrada, H.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Favazza, C.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Gao, L.

Gateau, J.

Gaumann, A.

G. E. Koehl, A. Gaumann, and E. K. Geissler, “Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies,” Clin. Exp. Metastasis 26(4), 329–344 (2009).
[Crossref] [PubMed]

Geissler, E. K.

G. E. Koehl, A. Gaumann, and E. K. Geissler, “Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies,” Clin. Exp. Metastasis 26(4), 329–344 (2009).
[Crossref] [PubMed]

Gong, H.

Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[Crossref]

Grobmyer, S. R.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Guo, L. J.

Heijblom, M.

Hu, S.

Hui, J.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Jetzfellner, T.

T. Jetzfellner and V. Ntziachristos, “Performance of blind deconvolution in optoacoustic tomography,” J. Innov. Opt. Health Sci. 4(4), 385–393 (2011).
[Crossref]

Jiang, H.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Kim, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Klaase, J. M.

Kneipp, M.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Koehl, G. E.

G. E. Koehl, A. Gaumann, and E. K. Geissler, “Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies,” Clin. Exp. Metastasis 26(4), 329–344 (2009).
[Crossref] [PubMed]

Lee, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Li, C.

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE Photonics J. 2(1), 57–66 (2010).
[Crossref] [PubMed]

Li, L.

Li, M.-L.

Li, Z.

Liang, S.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Liang, Y.

Lim, G.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Lin, R.

Ling, T.

Liu, Y.

Longo, R.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

Luo, Q.

Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[Crossref]

Ma, R.

Ma, T.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Manohar, S.

Margenthaler, J. A.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Maslov, K.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Meng, J.

Menk, R. H.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Michailovich, O.

O. Michailovich and A. Tannenbaum, “Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach,” IEEE Trans. Image Process. 16(12), 3005–3019 (2007).
[Crossref] [PubMed]

Mu, G.

Ntziachristos, V.

M. Omar, D. Soliman, J. Gateau, and V. Ntziachristos, “Ultrawideband reflection-mode optoacoustic mesoscopy,” Opt. Lett. 39(13), 3911–3914 (2014).
[Crossref] [PubMed]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012).
[Crossref] [PubMed]

T. Jetzfellner and V. Ntziachristos, “Performance of blind deconvolution in optoacoustic tomography,” J. Innov. Opt. Health Sci. 4(4), 385–393 (2011).
[Crossref]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Olivo, A.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Omar, M.

Pani, S.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Park, K.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Piras, D.

Poropat, P.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Prest, M.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Qian, W.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Rane, A. A.

H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
[PubMed]

Razansky, D.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012).
[Crossref] [PubMed]

Richardson, W. H.

Rigon, L.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Roy, S.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Shekhar, A.

H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
[PubMed]

Shoham, S.

Shung, K. K.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Slipchenko, M. N.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Soliman, D.

Song, K. H.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

Song, L.

Söntges, S.

Steenbergen, W.

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

Stoica, G.

Sturek, M.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Sun, D.

Tannenbaum, A.

O. Michailovich and A. Tannenbaum, “Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach,” IEEE Trans. Image Process. 16(12), 3005–3019 (2007).
[Crossref] [PubMed]

Tromba, G.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Turner, J.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Vallazza, E.

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

van den Engh, F. M.

van Hespen, J. C. G.

van Leeuwen, T. G.

Wang, H.

Wang, L. V.

L. Zhu, L. Li, L. Gao, and L. V. Wang, “Multi-view optical resolution photoacoustic microscopy,” Optica 1(4), 217–222 (2014).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE Photonics J. 2(1), 57–66 (2010).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Wang, P.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Wei, X.

Xi, L.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Xia, W.

Xie, L.

C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(2), 271–280 (2012).
[Crossref] [PubMed]

Xie, Z.

Xing, D.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Yalcin, H. C.

H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
[PubMed]

Yang, J.-M.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Yang, L.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Yang, X.

Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[Crossref]

Yao, J.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Yu, C.

C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(2), 271–280 (2012).
[Crossref] [PubMed]

Zeng, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Zhang, C.

C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(2), 271–280 (2012).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE Photonics J. 2(1), 57–66 (2010).
[Crossref] [PubMed]

Zhang, H. E.

Zhang, H. F.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zheng, H.

Zhou, G.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Zhou, Q.

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Zhu, L.

Zhu, X.

Appl. Opt. (1)

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

Clin. Exp. Metastasis (1)

G. E. Koehl, A. Gaumann, and E. K. Geissler, “Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies,” Clin. Exp. Metastasis 26(4), 329–344 (2009).
[Crossref] [PubMed]

IEEE Photonics J. (1)

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE Photonics J. 2(1), 57–66 (2010).
[Crossref] [PubMed]

IEEE Trans. Image Process. (2)

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

O. Michailovich and A. Tannenbaum, “Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach,” IEEE Trans. Image Process. 16(12), 3005–3019 (2007).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(2), 271–280 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[Crossref]

J. Biomed. Opt. (2)

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

J. Biophotonics (1)

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

T. Jetzfellner and V. Ntziachristos, “Performance of blind deconvolution in optoacoustic tomography,” J. Innov. Opt. Health Sci. 4(4), 385–393 (2011).
[Crossref]

J. Investig. Dermatol. Symp. Proc. (1)

I. M. Braverman, “The cutaneous microcirculation,” J. Investig. Dermatol. Symp. Proc. 5(1), 3–9 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vis. Exp. (1)

H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” J. Vis. Exp. 44(44), 2154 (2010).
[PubMed]

Laser Phys. Lett. (1)

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Med. Phys. (1)

A. Olivo, L. Rigon, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, G. Tromba, E. Vallazza, and E. Castelli, “Experimental evaluation of a simple algorithm to enhance the spatial resolution in scanned radiographic systems,” Med. Phys. 27(11), 2609–2616 (2000).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Med. (1)

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Phys. Med. Biol. (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Sci. Rep. (2)

P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser,” Sci. Rep. 4, 6889 (2014).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (22646 KB)      Visualization 1
» Visualization 2: AVI (18884 KB)      Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the ARPAM system.
Fig. 2
Fig. 2 Calibration of the spatial resolution of the original ARPAM system. (a) Lateral resolution; (b) Axial resolution.
Fig. 3
Fig. 3 Lateral resolution of the D-ARPAM. MAP images in lateral scanning direction of the microsphere by the original ARPAM system (a) and by D-ARPAM (b). (c) The 1D profiles along the lines in (a) and (b). MAP images of the cross pattern made of two tungsten wires obtained by the original ARPAM system (d) and by D-ARPAM (e). The minimum differentiable lateral separations of the two close objects by D-ARPAM (f) and by the original ARPAM system (g), which are plotted along the lines f and g, respectively, in (d) and (e).
Fig. 4
Fig. 4 Axial resolution of the D-ARPAM. (a) A-line PA signal and its Hilbert transform. (b) The depth profiles by the original ARPAM system and by D-ARPAM. (c) The phantom with two wires arranged with a small angle between them. B-mode images of the phantom in (c) by the original ARPAM system (d) and by D-ARPAM (e). The minimum differentiable axial separations of the two close objects by D-ARPAM (f) and by the original ARPAM system (g), plotted along the line f and g, respectively, in (d) and (e).
Fig. 5
Fig. 5 Images of the phantom containing five 50 μm-tungsten wires. (a) MAP images on XY plane by the original ARPAM system (left), by the two-step D-ARPAM (middle), and by the one-step D-ARPAM (right). (b) MAP images on YZ plane by the original ARPAM system (left), by the two-step D-ARPAM (middle), and by the one-step D-ARPAM (right). The 1 mm scale bar is for both (a) and (b). The 3D rendering images of the phantom by the original ARPAM system (c) and by the D-ARPAM (d).
Fig. 6
Fig. 6 In vivo 3D imaging of the chick embryo CAM. (a) MAP images on XY plane by the original ARPAM system (left) and by D-ARPAM (right). (b) The 2D MAP images on XZ plane by the original ARPAM system (left) and by D-ARPAM (right). The 1 mm scale bar is for both (a) and (b). The 3D rendering images by the original ARPAM system (c) and by D-ARPAM (d). 3D animations are available as supplementary videos: by the original ARPAM system (Visualization 1) and by D-ARPAM (Visualization 2).
Fig. 7
Fig. 7 In vivo imaging of the chick embryo CAM. (a) MAP images on XY plane by the original ARPAM system (left) and by D-ARPAM (right). (b) 1D profile along the dashed line shown in (a). The two vessels at Distance of ~3.5−4 mm in (b) corresponds to the regions denoted by the red arrows in (a).

Tables (1)

Tables Icon

Table 1 Lateral and Axial Resolution of D-ARPAM.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=PSF*O,
I=PSF*O+n,
J k =[ I PSF* J k1 *PSF'] J k1 ,
AMSE= x y z [ J k J k1 ] 2 x y z J k1 2 .
AER= x y z [PSF* J k I] 2 x y z I 2 .

Metrics