Abstract

We present measurements of total retinal blood flow in healthy volunteers using a three beam Doppler optical coherence tomography (D-OCT) technique. This technology has the advantage of a precise determination of the flow vector without the use of any a-priori information on the vessel geometry. Circular D-OCT scans around the optic disc were recorded and venous as well as arterial total blood flow was determined and compared for each subject. The reproducibility of the method was assessed in 6 subjects by repeated measurements. Only small deviations of around 6% between the measurements were found which indicates the high precision of the proposed method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active-passive path-length encoded (APPLE) Doppler OCT

Andreas Wartak, Richard Haindl, Wolfgang Trasischker, Bernhard Baumann, Michael Pircher, and Christoph K. Hitzenberger
Biomed. Opt. Express 7(12) 5233-5251 (2016)

Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes

Veronika Doblhoff-Dier, Leopold Schmetterer, Walthard Vilser, Gerhard Garhöfer, Martin Gröschl, Rainer A. Leitgeb, and René M. Werkmeister
Biomed. Opt. Express 5(2) 630-642 (2014)

Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography

Yimin Wang, Amani Fawzi, Ou Tan, John Gil-Flamer, and David Huang
Opt. Express 17(5) 4061-4073 (2009)

References

  • View by:
  • |
  • |
  • |

  1. V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
    [Crossref] [PubMed]
  2. J. T. Durham and I. M. Herman, “Microvascular modifications in diabetic retinopathy,” Curr. Diab. Rep. 11(4), 253–264 (2011).
    [Crossref] [PubMed]
  3. B. Pemp and L. Schmetterer, “Ocular blood flow in diabetes and age-related macular degeneration,” Can. J. Ophthalmol. 43(3), 295–301 (2008).
    [Crossref] [PubMed]
  4. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
    [Crossref] [PubMed]
  5. L. Schmetterer and G. Garhofer, “How can blood flow be measured?” Surv. Ophthalmol. 52(6Suppl 2), S134–S138 (2007).
    [Crossref] [PubMed]
  6. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [Crossref] [PubMed]
  7. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref] [PubMed]
  8. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
    [Crossref] [PubMed]
  9. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
    [Crossref] [PubMed]
  10. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [Crossref] [PubMed]
  11. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [Crossref] [PubMed]
  12. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
    [Crossref] [PubMed]
  13. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
    [Crossref] [PubMed]
  14. F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
    [Crossref] [PubMed]
  15. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
    [Crossref] [PubMed]
  16. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
    [Crossref] [PubMed]
  17. Y. C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
    [Crossref] [PubMed]
  18. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
    [Crossref] [PubMed]
  19. L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
    [Crossref] [PubMed]
  20. A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, “Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography,” in Proc. SPIE 6079, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 607925, (The International Society for Optical Engineering, 2006), 607925–607928.
  21. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
    [Crossref] [PubMed]
  22. R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
    [Crossref] [PubMed]
  23. C. Blatter, S. Coquoz, B. Grajciar, A. S. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
    [Crossref] [PubMed]
  24. V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630–642 (2014).
    [Crossref] [PubMed]
  25. W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
    [Crossref] [PubMed]
  26. R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
    [Crossref] [PubMed]
  27. T. Sidler, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048 (2003).
    [Crossref]
  28. C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
    [PubMed]
  29. A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light,” J. Mod. Opt. 38(7), 1327–1333 (1991).
    [Crossref]
  30. S. Duke-Elder, System of Ophthalmology: Ophthalmic Optics and Refraction (H. Kimpton, 1970).
  31. E. R. Villegas, L. Carretero, and A. Fimia, “Le Grand eye for the study of ocular chromatic aberration,” Ophthalmic Physiol. Opt. 16(6), 528–531 (1996).
    [Crossref] [PubMed]
  32. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
    [Crossref]
  33. American National Standards Institute, “American National Standards for Safe Use of Lasers,” in ANSI Z 136.1, (Laser Institute of America, Orlando, 2000).
  34. International Electrotechnical Commission, “Safety of laser products - Part 1: Equipment classification and requirements,” in IEC 60825–1 Ed. 2, (International Electrotechnical Commission, Geneva, 2001).
  35. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
    [Crossref] [PubMed]
  36. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
    [Crossref] [PubMed]
  37. G. C. Aschinger, L. Schmetterer, V. Doblhoff-Dier, R. A. Leitgeb, G. Garhöfer, M. Gröschl, and R. M. Werkmeister, “Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins,” Biomed. Opt. Express 6(5), 1599–1615 (2015).
    [Crossref] [PubMed]
  38. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
    [PubMed]
  39. J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
    [Crossref] [PubMed]
  40. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
    [Crossref] [PubMed]
  41. Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
    [Crossref] [PubMed]
  42. M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
    [Crossref] [PubMed]
  43. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
    [Crossref] [PubMed]
  44. J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
    [PubMed]
  45. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
    [PubMed]
  46. J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
    [Crossref] [PubMed]
  47. C. D. Murray, “The physiologtcal principle of minimum work I The vascular system and the cost of blood volume,” Proc. Natl. Acad. Sci. U.S.A. 12(3), 207–214 (1926).
    [Crossref] [PubMed]

2015 (3)

2014 (6)

V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630–642 (2014).
[Crossref] [PubMed]

L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
[Crossref] [PubMed]

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

2013 (2)

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

C. Blatter, S. Coquoz, B. Grajciar, A. S. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

2012 (2)

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
[Crossref] [PubMed]

2011 (3)

J. T. Durham and I. M. Herman, “Microvascular modifications in diabetic retinopathy,” Curr. Diab. Rep. 11(4), 253–264 (2011).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

2008 (5)

2007 (5)

Y. C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
[Crossref] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

L. Schmetterer and G. Garhofer, “How can blood flow be measured?” Surv. Ophthalmol. 52(6Suppl 2), S134–S138 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

T. Sidler, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048 (2003).
[Crossref]

2002 (3)

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

1997 (2)

1996 (1)

E. R. Villegas, L. Carretero, and A. Fimia, “Le Grand eye for the study of ocular chromatic aberration,” Ophthalmic Physiol. Opt. 16(6), 528–531 (1996).
[Crossref] [PubMed]

1995 (1)

1992 (1)

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
[PubMed]

1991 (2)

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
[PubMed]

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light,” J. Mod. Opt. 38(7), 1327–1333 (1991).
[Crossref]

1985 (2)

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

1926 (1)

C. D. Murray, “The physiologtcal principle of minimum work I The vascular system and the cost of blood volume,” Proc. Natl. Acad. Sci. U.S.A. 12(3), 207–214 (1926).
[Crossref] [PubMed]

Ahn, Y. C.

An, L.

Anderson, D.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Artal, P.

Aschinger, G. C.

Bachmann, A. H.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Baine, J.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
[PubMed]

Barton, J.

Barton, J. K.

Baumann, B.

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

C. Blatter, S. Coquoz, B. Grajciar, A. S. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Boas, D. A.

Boltz, A.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

Bonesi, M.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Brucker, A. J.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
[PubMed]

Cable, A. E.

Carretero, L.

E. R. Villegas, L. Carretero, and A. Fimia, “Le Grand eye for the study of ocular chromatic aberration,” Ophthalmic Physiol. Opt. 16(6), 528–531 (1996).
[Crossref] [PubMed]

Chen, Z.

Coquoz, S.

Costa, V. P.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Cremasco, F.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Dave, D.

Doblhoff-Dier, V.

Dragostinoff, N.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

Duker, J. S.

Durham, J. T.

J. T. Durham and I. M. Herman, “Microvascular modifications in diabetic retinopathy,” Curr. Diab. Rep. 11(4), 253–264 (2011).
[Crossref] [PubMed]

Fabritius, T.

Fawzi, A. A.

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light,” J. Mod. Opt. 38(7), 1327–1333 (1991).
[Crossref]

Fimia, A.

E. R. Villegas, L. Carretero, and A. Fimia, “Le Grand eye for the study of ocular chromatic aberration,” Ophthalmic Physiol. Opt. 16(6), 528–531 (1996).
[Crossref] [PubMed]

Flammer, J.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Flanagan, J. G.

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

Francis, B. A.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Francis, P.

Fujimoto, J. G.

Garcia, J. P.

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

Garcia, J. P. S.

J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

Garcia, P. T.

J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

Garhofer, G.

L. Schmetterer and G. Garhofer, “How can blood flow be measured?” Surv. Ophthalmol. 52(6Suppl 2), S134–S138 (2007).
[Crossref] [PubMed]

Garhöfer, G.

Gil-Flamer, J.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Goharian, I.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Götzinger, E.

Grajciar, B.

Greenfield, D. S.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Gröschl, M.

Grunwald, J. E.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

Gu, S.

Gugleta, K.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Haindl, R.

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
[Crossref] [PubMed]

Harris, A.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Herman, I. M.

J. T. Durham and I. M. Herman, “Microvascular modifications in diabetic retinopathy,” Curr. Diab. Rep. 11(4), 253–264 (2011).
[Crossref] [PubMed]

Hitzenberger, C.

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light,” J. Mod. Opt. 38(7), 1327–1333 (1991).
[Crossref]

Hitzenberger, C. K.

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
[PubMed]

Hornegger, J.

Huang, D.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

Hudson, C.

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

Izatt, J. A.

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
[Crossref]

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref] [PubMed]

Jaeken, B.

Jenkins, M. W.

Jiang, J. Y.

Juchem, M.

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light,” J. Mod. Opt. 38(7), 1327–1333 (1991).
[Crossref]

Jung, W.

Kergoat, H.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Konduru, R.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Kowalczyk, A.

Kraus, M. F.

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Kulkarni, M. D.

Lanzl, I.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Lasser, T.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Lee, J.

Leitgeb, R. A.

G. C. Aschinger, L. Schmetterer, V. Doblhoff-Dier, R. A. Leitgeb, G. Garhöfer, M. Gröschl, and R. M. Werkmeister, “Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins,” Biomed. Opt. Express 6(5), 1599–1615 (2015).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630–642 (2014).
[Crossref] [PubMed]

C. Blatter, S. Coquoz, B. Grajciar, A. S. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Liu, J. J.

Lovasik, J.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Lu, A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Makita, S.

McNabb, R. P.

Michaely, R.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Milner, T. E.

Murray, C. D.

C. D. Murray, “The physiologtcal principle of minimum work I The vascular system and the cost of blood volume,” Proc. Natl. Acad. Sci. U.S.A. 12(3), 207–214 (1926).
[Crossref] [PubMed]

Nelson, J. S.

Orgül, S.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Orzalesi, N.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Palkovits, S.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

Pedersen, C. J.

Pemp, B.

B. Pemp and L. Schmetterer, “Ocular blood flow in diabetes and age-related macular degeneration,” Can. J. Ophthalmol. 43(3), 295–301 (2008).
[Crossref] [PubMed]

Peterson, L. M.

Petrig, B. L.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

Pircher, M.

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

Polans, J.

Potsaid, B.

Renard, J. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Riva, C. E.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

Rollins, A. M.

Rosen, R. B.

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

Sadda, S. R.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Sadun, A. A.

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Schmetterer, L.

G. C. Aschinger, L. Schmetterer, V. Doblhoff-Dier, R. A. Leitgeb, G. Garhöfer, M. Gröschl, and R. M. Werkmeister, “Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins,” Biomed. Opt. Express 6(5), 1599–1615 (2015).
[Crossref] [PubMed]

V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630–642 (2014).
[Crossref] [PubMed]

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

C. Blatter, S. Coquoz, B. Grajciar, A. S. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

B. Pemp and L. Schmetterer, “Ocular blood flow in diabetes and age-related macular degeneration,” Can. J. Ophthalmol. 43(3), 295–301 (2008).
[Crossref] [PubMed]

L. Schmetterer and G. Garhofer, “How can blood flow be measured?” Surv. Ophthalmol. 52(6Suppl 2), S134–S138 (2007).
[Crossref] [PubMed]

Sehi, M.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Serra, L. M.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Shure, M. A.

Sidler, T.

T. Sidler, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048 (2003).
[Crossref]

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

Singh, A. S.

Srinivas, S.

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Stalmans, I.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Stefánsson, E.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Stodtmeister, R.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Stromski, S.

Szkulmowska, A.

Szkulmowski, M.

Tan, O.

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Tayyari, F.

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

Told, R.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

Torzicky, T.

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

Trasischker, W.

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

Varma, R.

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Villegas, E. R.

E. R. Villegas, L. Carretero, and A. Fimia, “Le Grand eye for the study of ocular chromatic aberration,” Ophthalmic Physiol. Opt. 16(6), 528–531 (1996).
[Crossref] [PubMed]

Villiger, M. L.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Vilser, W.

Vymyslicky, M.

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

Wang, R. K.

Wang, X. J.

Wang, Y.

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Welch, A. J.

Werkmeister, R. M.

G. C. Aschinger, L. Schmetterer, V. Doblhoff-Dier, R. A. Leitgeb, G. Garhöfer, M. Gröschl, and R. M. Werkmeister, “Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins,” Biomed. Opt. Express 6(5), 1599–1615 (2015).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630–642 (2014).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

C. Blatter, S. Coquoz, B. Grajciar, A. S. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

Wilson, D. J.

Wojtkowski, M.

Wu, W.

Yasuno, Y.

Yazdanfar, S.

Yusof, F.

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

Zeitz, O.

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Zhang, X.

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

Zhu, B.

Zotter, S.

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

V. P. Costa, A. Harris, D. Anderson, R. Stodtmeister, F. Cremasco, H. Kergoat, J. Lovasik, I. Stalmans, O. Zeitz, I. Lanzl, K. Gugleta, and L. Schmetterer, “Ocular perfusion pressure in glaucoma,” Acta Ophthalmol. 92(4), e252–e266 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Br. J. Ophthalmol. (1)

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[Crossref] [PubMed]

Can. J. Ophthalmol. (1)

B. Pemp and L. Schmetterer, “Ocular blood flow in diabetes and age-related macular degeneration,” Can. J. Ophthalmol. 43(3), 295–301 (2008).
[Crossref] [PubMed]

Curr. Diab. Rep. (1)

J. T. Durham and I. M. Herman, “Microvascular modifications in diabetic retinopathy,” Curr. Diab. Rep. 11(4), 253–264 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

F. Tayyari, F. Yusof, M. Vymyslicky, O. Tan, D. Huang, J. G. Flanagan, and C. Hudson, “Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(12), 7716–7725 (2014).
[Crossref] [PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
[PubMed]

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci. 33(2), 356–363 (1992).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985).
[PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(10), 6062–6071 (2012).
[Crossref] [PubMed]

Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 116010 (2013).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

J. Mod. Opt. (2)

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62(21), 1781–1788 (2015).
[Crossref] [PubMed]

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light,” J. Mod. Opt. 38(7), 1327–1333 (1991).
[Crossref]

Ophthalmic Physiol. Opt. (1)

E. R. Villegas, L. Carretero, and A. Fimia, “Le Grand eye for the study of ocular chromatic aberration,” Ophthalmic Physiol. Opt. 16(6), 528–531 (1996).
[Crossref] [PubMed]

Ophthalmic Res. (2)

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002).
[Crossref] [PubMed]

Ophthalmology (1)

M. Sehi, I. Goharian, R. Konduru, O. Tan, S. Srinivas, S. R. Sadda, B. A. Francis, D. Huang, and D. S. Greenfield, “Retinal blood flow in glaucomatous eyes with single-hemifield damage,” Ophthalmology 121(3), 750–758 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

T. Sidler, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (9)

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
[Crossref] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
[Crossref] [PubMed]

Y. C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
[Crossref] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
[Crossref] [PubMed]

Optica (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. D. Murray, “The physiologtcal principle of minimum work I The vascular system and the cost of blood volume,” Proc. Natl. Acad. Sci. U.S.A. 12(3), 207–214 (1926).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (2)

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

L. Schmetterer and G. Garhofer, “How can blood flow be measured?” Surv. Ophthalmol. 52(6Suppl 2), S134–S138 (2007).
[Crossref] [PubMed]

Other (4)

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, “Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography,” in Proc. SPIE 6079, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 607925, (The International Society for Optical Engineering, 2006), 607925–607928.

American National Standards Institute, “American National Standards for Safe Use of Lasers,” in ANSI Z 136.1, (Laser Institute of America, Orlando, 2000).

International Electrotechnical Commission, “Safety of laser products - Part 1: Equipment classification and requirements,” in IEC 60825–1 Ed. 2, (International Electrotechnical Commission, Geneva, 2001).

S. Duke-Elder, System of Ophthalmology: Ophthalmic Optics and Refraction (H. Kimpton, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Three beam D-OCT system. C: Miniature Fiber Collimator, FC: Fiber Collimator, L: Lens, G: Grating, BS: Beamsplitter, M: Mirror, PP: Dispersion-compensating Prism Pairs, NF: Neutral Density Filter, FPT: Facet Prism Telescope, T: Telescope, MEMS: two-axis gimbal-less scanning mirror, LS: Linear Stage, SLD: Superluminescent Light Emitting Diode, CAM: Line Scan Camera.
Fig. 2
Fig. 2 Illustration of the beam geometry of the three beams illuminating the sample. A, B, C entrance location of the beams at the pupil plane of the eye. a, b, c vectors indicating the direction of each beam towards the sample.
Fig. 3
Fig. 3 Beam geometry at the plane of a beam profiler. Red gradient dots: Indicate the three sampling beams. A, B, C: the three beams. a, b, c: side lengths of the triangle. α, β, γ: angles of the corresponding vertices. Lines with two arrows: Movement of the beams that is introduced through x-scanning measured with a beam profiler that is axially placed slightly out of position of the pupil plane of the eye. φ: angle between triangle base and x-scan direction. Left: ideal base geometry. x-axis of the coordinate system is aligned parallel to c and the x scanning direction. Center: The x-axis of the coordinate system is not parallel to the x-scanning direction, as observed with the beam profiler. Right: Using a passive coordinate transformation a new coordinate system x', y', z' can be introduced with an x-axis that is parallel to the x-scanning directions. Performing this transformation yields new coordinates A', B', C' for the beam locations at the pupil plane of the eye.
Fig. 4
Fig. 4 Simplified illustration of the scanning geometry in the sample arm. M: mirrors. MEMS: 2-D gimbal less scanning mirror. T: telescope. f: focal length. Blue lines: Geometry of the three beams without scanning. Dotted lines: Beam geometry while scanning. The beam geometry is different for every position of the scan.
Fig. 5
Fig. 5 Phase difference background subtraction. Top: circular OCT intensity B-scan of channel 3, consisting of 6144 A-scans. Bottom left: Original phase difference images for all 3 channels. Bottom right: Phase difference images with subtracted phase offset and bulk motion compensation.
Fig. 6
Fig. 6 D-OCT phase difference images. All major vessels from all three channels in the circular B-scan from Fig. 5 are visualized. Images are averaged 10x in complex space. No unwrapping was applied. Horizontal rows: Vessels from the respective channel numbered from 1 to 12. Black boxes correspond to the size of the ROI.
Fig. 7
Fig. 7 3-D velocity profile evaluation. (a) single circular B-scan for every channel, consisting of 6144 A-scans each. White numbers, vessel numbering. Green lines, segmentation lines for phase offset subtraction. (b, center) Color fundus photo. Black circular arrow indicates the direction and the path of the circular scan. Black inner numbers: Vessel numbering. Arrows with numbers: calculated vessel orientation from the 3 beam D-OCT data. (b, surrounding) Reconstructed velocity profiles for the corresponding vessels around the ONH after phase offset subtraction, phase unwrapping and averaging over 10 B-scans. x-axis: A-scans (200, zoomed view on the vessel location, steps of 40), y-axis: Depth pixel (100, steps of 20), z-axis: Velocity (mm/s, 0 - 40, steps of 8).
Fig. 8
Fig. 8 Box-Whiskers plot of the total retinal mean blood flow (20 eyes) in veins and arteries. Filled square: Average. Horizontal line: Median. Filled circles: Maximum and minimum measured flow. Box: 25th and 75th percentile. Whiskers: 1.5 times the interquartile distance – ( + ) the 25th (75th) percentile. If this value is smaller (greater) or equal to the smallest (largest) value in the data set, the whisker is drawn at this position.
Fig. 9
Fig. 9 Blood flow rate versus vessel diameter (log-log plot) and mean velocity versus vessel diameter. Upper left: venous blood flow. Upper right: arterial blood flow. Lower left: venous velocity. Lower right: arterial velocity. Filled area: 95% confidence interval of the fit. Vessel diameters are determined from the D-OCT phase difference images.

Tables (1)

Tables Icon

Table 1 Reproducibility evaluation. Mean coefficients of variation for the mean velocity v, vessel diameter D and mean flow Q retrieved by averaging the coefficients of variation obtained from 4 individual measurements each in every single vessel of 6 different eyes. Total flow variation for veins Qv and arteries Qa retrieved by 4 individual total flow measurements.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a'=( c 2 sin( γ+φ ) sin( γ ) c 2 cos( γ+φ ) sin( γ ) f );b'=( c 2 sin( γφ ) sin( γ ) c 2 cos( γφ ) sin( γ ) f );c'=( bcos( αφ ) c 2 sin( γ+φ ) sin( γ ) bsin( αφ ) c 2 cos( γ+φ ) sin( γ ) f )
N a =( 0 1 . . N a 1 ), g=g N a
a i ''=( a ' x +rcos( g i ) a ' y rsin( g i ) f eye ); b i ''=( b ' x +rcos( g i ) b ' y rsin( g i ) f eye ); c i ''=( c ' x +rcos( g i ) c ' y rsin( g i ) f eye )
BG M i =( a i '' a i '' T b i '' b i '' T c i '' c i '' T )=( e a i T e b i T e c i T )=( e a x i e a y i e a z i e b x i e b y i e b z i e c x i e c y i e c z i )
Q= v mean D 2 π 4

Metrics