Abstract

We report the development of a novel otoscopy probe for assessing middle ear anatomy and function. Video imaging and phase-sensitive optical coherence tomography are combined within the same optical path. A sound stimuli channel is incorporated as well to study middle ear function. Thus, besides visualizing the morphology of the middle ear, the vibration amplitude and frequency of the eardrum and ossicles are retrieved as well. Preliminary testing on cadaveric human temporal bone models has demonstrated the capability of this instrument for retrieving middle ear anatomy with micron scale resolution, as well as the vibration of the tympanic membrane and ossicles with sub-nm resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography

Antoine Ramier, Jeffrey Tao Cheng, Michael E. Ravicz, John J. Rosowski, and Seok-Hyun Yun
Biomed. Opt. Express 9(11) 5489-5502 (2018)

Miniature, minimally invasive, tunable endoscope for investigation of the middle ear

Michal E. Pawlowski, Sebina Shrestha, Jesung Park, Brian E. Applegate, John S. Oghalai, and Tomasz S. Tkaczyk
Biomed. Opt. Express 6(6) 2246-2257 (2015)

In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope

Nam Hyun Cho, Jeong Hun Jang, Woonggyu Jung, and Jeehyun Kim
Opt. Express 22(8) 8985-8995 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Kurokawa and R. L. Goode, “Sound pressure gain produced by the human middle ear,” Otolaryngol. Head Neck Surg. 113(4), 349–355 (1995).
    [Crossref] [PubMed]
  2. S. N. Merchant and J. J. Rosowski, “Acoustic and mechanics of the middle ear,” in Glasscock-Shambaugh Surgery of the Ear, A.J. Gulya, L.B. Minor, and D. Poe, eds. (People's Medical Publishing House, 2010), pp. 49–72.
  3. M. C. Holley, “Keynote review: The auditory system, hearing loss and potential targets for drug development,” Drug Discov. Today 10(19), 1269–1282 (2005).
    [Crossref] [PubMed]
  4. D. W. Chakeres and M. A. Augustyn, “Temporal bone imaging,” in Head and Neck Imaging, 4th ed., S. A. Sorrentino and B. Gorek, eds. (Mosby’s Textbook for Long-Term Care Assistants, 2003), pp. 1093–1108.
  5. R. H. Margolis and D. E. Morgan, “Automated pure-tone audiometry: an analysis of capacity, need, and benefit,” Am. J. Audiol. 17(2), 109–113 (2008).
    [Crossref] [PubMed]
  6. J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
    [PubMed]
  7. E. Onusko, “Tympanometry,” Am. Fam. Physician 70(9), 1713–1720 (2004).
    [PubMed]
  8. F. Waridel, “[Use of tympanometry in children],” Rev. Med. Suisse 2(91), 2881–2883 (2006).
    [PubMed]
  9. J. Shanks and J. Schohet, “Tympanometry in Clinical Practice,” in Handbook of Clinical Audiology, J. Katz, ed. (Lippincott Williams & Wilkins, 2009), pp. 157–188.
  10. H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
    [Crossref] [PubMed]
  11. J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
    [PubMed]
  12. J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
    [Crossref] [PubMed]
  13. L. S. Folio, G. Wollstein, and J. S. Schuman, “Optical coherence tomography: future trends for imaging in glaucoma,” Optom. Vis. Sci. 89(5), E554–E562 (2012).
    [Crossref] [PubMed]
  14. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  15. A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
    [Crossref] [PubMed]
  16. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
    [Crossref] [PubMed]
  17. N. H. Cho, J. H. Jang, W. Jung, and J. Kim, “In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope,” Opt. Express 22(8), 8985–8995 (2014).
    [Crossref] [PubMed]
  18. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
    [Crossref] [PubMed]
  19. G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
    [Crossref] [PubMed]
  20. E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
    [Crossref] [PubMed]
  21. H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
    [Crossref] [PubMed]
  22. H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
    [Crossref] [PubMed]
  23. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  24. S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
    [Crossref] [PubMed]
  25. S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
    [Crossref] [PubMed]
  26. J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
    [Crossref] [PubMed]
  27. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105(10), 102040 (2009).
    [Crossref]
  28. J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
    [Crossref] [PubMed]
  29. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]

2015 (2)

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (6)

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
[PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
[Crossref] [PubMed]

2012 (4)

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

L. S. Folio, G. Wollstein, and J. S. Schuman, “Optical coherence tomography: future trends for imaging in glaucoma,” Optom. Vis. Sci. 89(5), E554–E562 (2012).
[Crossref] [PubMed]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

2010 (2)

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

2009 (1)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105(10), 102040 (2009).
[Crossref]

2008 (3)

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

R. H. Margolis and D. E. Morgan, “Automated pure-tone audiometry: an analysis of capacity, need, and benefit,” Am. J. Audiol. 17(2), 109–113 (2008).
[Crossref] [PubMed]

2006 (1)

F. Waridel, “[Use of tympanometry in children],” Rev. Med. Suisse 2(91), 2881–2883 (2006).
[PubMed]

2005 (2)

M. C. Holley, “Keynote review: The auditory system, hearing loss and potential targets for drug development,” Drug Discov. Today 10(19), 1269–1282 (2005).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[Crossref] [PubMed]

2004 (1)

E. Onusko, “Tympanometry,” Am. Fam. Physician 70(9), 1713–1720 (2004).
[PubMed]

1995 (1)

H. Kurokawa and R. L. Goode, “Sound pressure gain produced by the human middle ear,” Otolaryngol. Head Neck Surg. 113(4), 349–355 (1995).
[Crossref] [PubMed]

Aarnisalo, A. A.

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

Aerts, J. R.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Agrawal, S. K.

J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
[Crossref] [PubMed]

Applegate, B. E.

Baumann, B.

Beyea, J. A.

J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
[Crossref] [PubMed]

Boppart, S. A.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Bradu, A.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Buytaert, J. A.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Cable, A. E.

Carbajal, E. F.

Chaney, E. J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Chang, E. W.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

Chang, J. E.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

Chen, X.

Chen, Z.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

Cheng, J. T.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

Cho, N. H.

Choi, W.

Choma, M. A.

Choudhury, N.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Cleveland, L. M.

J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
[PubMed]

Creazzo, T. L.

Davila, V.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Davis, J. L.

J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
[PubMed]

Dirckx, J. J.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Djalilian, H. R.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

Duker, J. S.

Ellerbee, A. K.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[Crossref] [PubMed]

Folio, L. S.

L. S. Folio, G. Wollstein, and J. S. Schuman, “Optical coherence tomography: future trends for imaging in glaucoma,” Optom. Vis. Sci. 89(5), E554–E562 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

Furlong, C.

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

Gao, S. S.

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Goode, R. L.

H. Kurokawa and R. L. Goode, “Sound pressure gain produced by the human middle ear,” Otolaryngol. Head Neck Surg. 113(4), 349–355 (1995).
[Crossref] [PubMed]

Grulkowski, I.

Halpin, C. F.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

Hamade, M. A.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

Harrington, E.

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

Hernandez-Montes, M. S.

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

Hill, M. C.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Holley, M. C.

M. C. Holley, “Keynote review: The auditory system, hearing loss and potential targets for drug development,” Drug Discov. Today 10(19), 1269–1282 (2005).
[Crossref] [PubMed]

Huang, D.

Izatt, J. A.

Jacques, S. L.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Jang, J. H.

Jayaraman, V.

Jung, W.

N. H. Cho, J. H. Jang, W. Jung, and J. Kim, “In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope,” Opt. Express 22(8), 8985–8995 (2014).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kim, J.

N. H. Cho, J. H. Jang, W. Jung, and J. Kim, “In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope,” Opt. Express 22(8), 8985–8995 (2014).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kobler, J. B.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

Kurokawa, H.

H. Kurokawa and R. L. Goode, “Sound pressure gain produced by the human middle ear,” Otolaryngol. Head Neck Surg. 113(4), 349–355 (1995).
[Crossref] [PubMed]

Ladak, H. M.

J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
[Crossref] [PubMed]

Larin, K. V.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105(10), 102040 (2009).
[Crossref]

Lee, H. Y.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Liu, J. J.

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Lu, C. D.

Mahfoud, L.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

Manapuram, R. K.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105(10), 102040 (2009).
[Crossref]

Manne, V. G. R.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105(10), 102040 (2009).
[Crossref]

Margolis, R. H.

R. H. Margolis and D. E. Morgan, “Automated pure-tone audiometry: an analysis of capacity, need, and benefit,” Am. J. Audiol. 17(2), 109–113 (2008).
[Crossref] [PubMed]

McCormick, D. T.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Merchant, G. R.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

Merchant, S. N.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Monroy, G. L.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Morgan, D. E.

R. H. Margolis and D. E. Morgan, “Automated pure-tone audiometry: an analysis of capacity, need, and benefit,” Am. J. Audiol. 17(2), 109–113 (2008).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nakajima, H. H.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Nguyen, C. T.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Nguyen-Huynh, A.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Nguyen-Huynh, A. T.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Nolan, R. M.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Novak, M.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Novak, M. A.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Nuttall, A. L.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Oghalai, J. S.

Onusko, E.

E. Onusko, “Tympanometry,” Am. Fam. Physician 70(9), 1713–1720 (2004).
[PubMed]

Park, J.

Pisano, D. V.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

Podoleanu, A. G.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Potsaid, B.

Raphael, P. D.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Rohani, S. A.

J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
[Crossref] [PubMed]

Roosli, C.

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

Röösli, C.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

Rosowski, J. J.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Schuman, J. S.

L. S. Folio, G. Wollstein, and J. S. Schuman, “Optical coherence tomography: future trends for imaging in glaucoma,” Optom. Vis. Sci. 89(5), E554–E562 (2012).
[Crossref] [PubMed]

Seales, J. S.

J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
[PubMed]

Sepehr, A.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

Shelton, R. L.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Stewart, C. N.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Subhash, H. M.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Sun, H.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Van der Jeught, S.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Walker, J. J.

J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
[PubMed]

Wang, R.

Wang, R. K.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Waridel, F.

F. Waridel, “[Use of tympanometry in children],” Rev. Med. Suisse 2(91), 2881–2883 (2006).
[PubMed]

Wollstein, G.

L. S. Folio, G. Wollstein, and J. S. Schuman, “Optical coherence tomography: future trends for imaging in glaucoma,” Optom. Vis. Sci. 89(5), E554–E562 (2012).
[Crossref] [PubMed]

Wong, B. J.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

Xia, A.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yang, C.

Yun, S. H.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

Am. Fam. Physician (2)

J. J. Walker, L. M. Cleveland, J. L. Davis, and J. S. Seales, “Audiometry screening and interpretation,” Am. Fam. Physician 87(1), 41–47 (2013).
[PubMed]

E. Onusko, “Tympanometry,” Am. Fam. Physician 70(9), 1713–1720 (2004).
[PubMed]

Am. J. Audiol. (1)

R. H. Margolis and D. E. Morgan, “Automated pure-tone audiometry: an analysis of capacity, need, and benefit,” Am. J. Audiol. 17(2), 109–113 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Drug Discov. Today (1)

M. C. Holley, “Keynote review: The auditory system, hearing loss and potential targets for drug development,” Drug Discov. Today 10(19), 1269–1282 (2005).
[Crossref] [PubMed]

Ear Hear. (2)

H. H. Nakajima, D. V. Pisano, C. Roosli, M. A. Hamade, G. R. Merchant, L. Mahfoud, C. F. Halpin, J. J. Rosowski, and S. N. Merchant, “Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study,” Ear Hear. 33(1), 35–43 (2012).
[Crossref] [PubMed]

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Hear. Res. (2)

J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263(1-2), 66–77 (2010).
[Crossref] [PubMed]

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105(10), 102040 (2009).
[Crossref]

J. Assoc. Res. Otolaryngol. (1)

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

J. Otolaryngol. Head Neck Surg. (1)

J. A. Beyea, S. A. Rohani, H. M. Ladak, and S. K. Agrawal, “Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration,” J. Otolaryngol. Head Neck Surg. 42(1), 17 (2013).
[Crossref] [PubMed]

Laryngoscope (2)

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Optom. Vis. Sci. (1)

L. S. Folio, G. Wollstein, and J. S. Schuman, “Optical coherence tomography: future trends for imaging in glaucoma,” Optom. Vis. Sci. 89(5), E554–E562 (2012).
[Crossref] [PubMed]

Otolaryngol. Head Neck Surg. (1)

H. Kurokawa and R. L. Goode, “Sound pressure gain produced by the human middle ear,” Otolaryngol. Head Neck Surg. 113(4), 349–355 (1995).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Rev. Med. Suisse (1)

F. Waridel, “[Use of tympanometry in children],” Rev. Med. Suisse 2(91), 2881–2883 (2006).
[PubMed]

Other (3)

J. Shanks and J. Schohet, “Tympanometry in Clinical Practice,” in Handbook of Clinical Audiology, J. Katz, ed. (Lippincott Williams & Wilkins, 2009), pp. 157–188.

S. N. Merchant and J. J. Rosowski, “Acoustic and mechanics of the middle ear,” in Glasscock-Shambaugh Surgery of the Ear, A.J. Gulya, L.B. Minor, and D. Poe, eds. (People's Medical Publishing House, 2010), pp. 49–72.

D. W. Chakeres and M. A. Augustyn, “Temporal bone imaging,” in Head and Neck Imaging, 4th ed., S. A. Sorrentino and B. Gorek, eds. (Mosby’s Textbook for Long-Term Care Assistants, 2003), pp. 1093–1108.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Instrument simplified schematic and probe Solidworks design.
Fig. 2
Fig. 2 Zemax design of the hand-held probe. (A): 3D representation of both OCT and video channels; (B): Zemax design of the OCT channel showing the through focus imaging performance over 4 mm imaging range.
Fig. 3
Fig. 3 Photographs of the instrumentation unit, ear bone testing setup, and imaging probe.
Fig. 4
Fig. 4 Phase noise and SNR measurements on phantom consisting of a pellicle of thin cellulose acetate film. A,B: Comparison of the phase noise figures as a function of frequency for the SDOCT setup and for the SSOCT setup. C: SDOCT vibrational SNR for 3 different sound pressures within the 0-8 kHz frequency excitation range and 250Alines/M scan.
Fig. 5
Fig. 5 Photographs showing the preliminary testing of the probe on a ½” pellicle of cellulose acetate film, 0.05 mm in thickness. A- Probe resting on the optical table; B: Probe held by a study investigator.
Fig. 6
Fig. 6 Phase measurements on a ½” pellicle of cellulose acetate film, 0.05 mm in thickness when a 50dB sound stimulus with a frequency of 5 kHz was applied. A- hand held; B: Probe resting on the table.
Fig. 7
Fig. 7 Vibrational images of a ½” pellicle of cellulose acetate film, 0.05 mm in thickness. A: Hand-held case without sound stimuli applied; A’: Hand –held case with a 50dB/5 kHz sound stimulus applied. B: Probe resting case without sound stimuli applied; B’: Probe resting case with a 50dB/5 kHz sound stimulus applied.
Fig. 8
Fig. 8 A: Cartoon showing the anatomy of the middle ear ossicles [Source: http://www.britannica.com/science/middle-ear]. B: Cross-sectional OCT image of the middle ear. Two images obtained for two focal positions and slightly different angular orientations were stitched to display the morphology of all three ossciles within the same image.
Fig. 9
Fig. 9 Vibrational images of the human middle ear. (A): Cartoon showing the scanning direction with respect to the position of the TM and ossicles [Source: http://info.visiblebody.com/bid/323583/Five-Cool-Facts-about-the-Middle-and-Inner-Ear]. (B): Video image frame of the TM- showing OCT scanning directions. (C,D): Vibrograms acquired at two different locations for a SP of 70 dB and a stimulus frequency of 4 kHz. Legend: TM-typmanic membrane; MA- malleus; IN- incus, ST- stapes.
Fig. 10
Fig. 10 Summary of the ear bone measurements. (A): The magnitude of the vibration as a function of the SPL for a 4 kHz sound stimuli; (B): The magnitude of the vibration as a function of the frequency of the sound stimuli for a 70 dB SPL.

Metrics