Abstract

Successful breast conserving surgery consists of complete removal of the tumor while sparing healthy surrounding tissue. Despite currently available imaging and margin assessment tools, recognizing tumor tissue at a resection margin during surgery is challenging. Diffuse reflectance spectroscopy (DRS), which uses light for tissue characterization, can potentially guide surgeons to prevent tumor positive margins. However, inter-patient variation and changes in tissue physiology occurring during the resection might hamper this light-based technology. Here we investigate how inter-patient variation and tissue status (in vivo vs ex vivo) affect the performance of the DRS optical parameters. In vivo and ex vivo measurements of 45 breast cancer patients were obtained and quantified with an analytical model to acquire the optical parameters. The optical parameter representing the ratio between fat and water provided the best discrimination between normal and tumor tissue, with an area under the receiver operating characteristic curve of 0.94. There was no substantial influence of other patient factors such as menopausal status on optical measurements. Contrary to expectations, normalization of the optical parameters did not improve the discriminative power. Furthermore, measurements taken in vivo were not significantly different from the measurements taken ex vivo. These findings indicate that DRS is a robust technology for the detection of tumor tissue during breast conserving surgery.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field imaging of fluorescent deoxy-glucose in ex vivo malignant and normal breast tissue

R. J. Langsner, L. P. Middleton, J. Sun, F. Meric-Bernstam, K. K. Hunt, R. A. Drezek, and T. K. Yu
Biomed. Opt. Express 2(6) 1514-1523 (2011)

Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins

Torre M. Bydlon, Stephanie A. Kennedy, Lisa M. Richards, J. Quincy Brown, Bing Yu, Marlee K. Junker, Jennifer Gallagher, Joseph Geradts, Lee G. Wilke, and Nimmi Ramanujam
Opt. Express 18(8) 8058-8076 (2010)

Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue

Maarten R. Grootendorst, Anthony J. Fitzgerald, Susan G. Brouwer de Koning, Aida Santaolalla, Alessia Portieri, Mieke Van Hemelrijck, Matthew R. Young, Julie Owen, Massi Cariati, Michael Pepper, Vincent P. Wallace, Sarah E. Pinder, and Arnie Purushotham
Biomed. Opt. Express 8(6) 2932-2945 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: a Systematic Review,” Ann. Surg. Oncol. 19(10), 3236–3245 (2012).
    [Crossref] [PubMed]
  2. H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
    [Crossref] [PubMed]
  3. M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
    [Crossref] [PubMed]
  4. J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
    [Crossref] [PubMed]
  5. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
    [Crossref] [PubMed]
  6. K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
    [Crossref] [PubMed]
  7. M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
    [Crossref] [PubMed]
  8. A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
    [Crossref] [PubMed]
  9. J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
    [Crossref] [PubMed]
  10. N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).
  11. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
    [Crossref] [PubMed]
  12. B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
    [Crossref] [PubMed]
  13. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
    [Crossref] [PubMed]
  14. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
    [Crossref] [PubMed]
  15. P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
    [Crossref] [PubMed]
  16. R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
    [Crossref] [PubMed]
  17. S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
    [Crossref] [PubMed]
  18. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [Crossref] [PubMed]
  19. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
    [Crossref] [PubMed]
  20. E. Salomatina and A. N. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
    [Crossref] [PubMed]
  21. G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
    [Crossref] [PubMed]
  22. R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
    [Crossref] [PubMed]
  23. R. Nachabe, B. H. W. Hendriks, M. Van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy; benefit of extending the UV-VIS wavelength range to include 1000 to 1600nm,” Biomed. Opt. Express 1 (5), 1432–1442 (2010).
    [Crossref]
  24. J. Shults and S. J. Ratcliffe, “Analysis of multi-level correlated data in the framework of generalized estimating equations via xtmultcorr procedures in Stata and qls functions in Matlab,” Stat. Interface 2(2), 187–196 (2009).
    [Crossref]
  25. S. Sahoo and S. C. Lester, “Pathology of Breast Carcinomas After Neoadjuvant Chemotherapy: an Overview with Recommendations on Specimen Processing and Reporting,” Arch. Pathol. Lab. Med. 133(4), 633–642 (2009).
    [PubMed]
  26. T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
    [Crossref] [PubMed]
  27. L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
    [Crossref] [PubMed]
  28. J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
    [Crossref] [PubMed]
  29. K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
    [Crossref] [PubMed]
  30. A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
    [Crossref] [PubMed]
  31. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: a Nonparametric Approach,” Biometrics 44(3), 837–845 (1988).
    [Crossref] [PubMed]
  32. L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
    [Crossref] [PubMed]
  33. D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
    [Crossref] [PubMed]
  34. P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
    [Crossref] [PubMed]
  35. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
    [Crossref] [PubMed]
  36. L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
    [Crossref]
  37. R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
    [Crossref] [PubMed]
  38. W. R. Lloyd, R. H. Wilson, S. Y. Lee, M. Chandra, B. McKenna, D. Simeone, J. Scheiman, and M.-A. Mycek, “In vivo optical spectroscopy for improved detection of pancreatic adenocarcinoma: a feasibility study,” Biomed. Opt. Express 5(1), 9–15 (2014).
    [Crossref] [PubMed]
  39. T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
    [Crossref] [PubMed]

2016 (1)

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

2015 (6)

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

2014 (3)

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
[Crossref] [PubMed]

W. R. Lloyd, R. H. Wilson, S. Y. Lee, M. Chandra, B. McKenna, D. Simeone, J. Scheiman, and M.-A. Mycek, “In vivo optical spectroscopy for improved detection of pancreatic adenocarcinoma: a feasibility study,” Biomed. Opt. Express 5(1), 9–15 (2014).
[Crossref] [PubMed]

2013 (4)

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

2012 (5)

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: a Systematic Review,” Ann. Surg. Oncol. 19(10), 3236–3245 (2012).
[Crossref] [PubMed]

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

2011 (1)

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

2010 (5)

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabe, B. H. W. Hendriks, M. Van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy; benefit of extending the UV-VIS wavelength range to include 1000 to 1600nm,” Biomed. Opt. Express 1 (5), 1432–1442 (2010).
[Crossref]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

2009 (4)

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

J. Shults and S. J. Ratcliffe, “Analysis of multi-level correlated data in the framework of generalized estimating equations via xtmultcorr procedures in Stata and qls functions in Matlab,” Stat. Interface 2(2), 187–196 (2009).
[Crossref]

S. Sahoo and S. C. Lester, “Pathology of Breast Carcinomas After Neoadjuvant Chemotherapy: an Overview with Recommendations on Specimen Processing and Reporting,” Arch. Pathol. Lab. Med. 133(4), 633–642 (2009).
[PubMed]

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

2008 (2)

E. Salomatina and A. N. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

2006 (1)

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

2005 (1)

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

2004 (3)

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

2002 (1)

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref] [PubMed]

1996 (1)

P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
[Crossref] [PubMed]

1988 (1)

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: a Nonparametric Approach,” Biometrics 44(3), 837–845 (1988).
[Crossref] [PubMed]

Abbate, F.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Akbari, S.

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

Andersson-Engels, S.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Anglin, B.

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

Arredondo, M. A.

P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
[Crossref] [PubMed]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Bahri, S.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Balestreri, N.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Barman, I.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

Barry, W.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Barry, W. T.

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

Barth, R. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Bitar, R. A.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Blohmer, J.-U.

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Boppart, S. A.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Borsic, A.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Boulos, F. I.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Brown, J. Q.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

Buist, D. S. M.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Butler, J.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Bydlon, T.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Bydlon, T. M.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

Canevari, R. A.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Canner, J. K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Cantanhede, G.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

Cassano, E.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Chandra, M.

Chen, J. H.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chen, J.-H.

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

Chen, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Chen, W. P.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chin, L.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Cittadine, A. J.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Clarke-Pearson, D. L.

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: a Nonparametric Approach,” Biometrics 44(3), 837–845 (1988).
[Crossref] [PubMed]

Cook, A. J.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Costa, S. D.

H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
[Crossref] [PubMed]

Crowe, J. P.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Cubeddu, R.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Cuccia, D. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Cummings, S. R.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Czarnota, G. J.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

D’Souza, D. J.

P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
[Crossref] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Dasari, R. R.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

de Boer, L. L.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

Dehghani, H.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

DeLong, D. M.

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: a Nonparametric Approach,” Biometrics 44(3), 837–845 (1988).
[Crossref] [PubMed]

DeLong, E. R.

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: a Nonparametric Approach,” Biometrics 44(3), 837–845 (1988).
[Crossref] [PubMed]

Desjardins, A. E.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabe, B. H. W. Hendriks, M. Van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy; benefit of extending the UV-VIS wavelength range to include 1000 to 1600nm,” Biomed. Opt. Express 1 (5), 1432–1442 (2010).
[Crossref]

Dingari, N. C.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

DiNitto, P. A.

P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
[Crossref] [PubMed]

dos Santos, E. A. P.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Douek, M.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

Eggemann, H.

H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
[Crossref] [PubMed]

Ellis, I.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Enfield, L.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Esbona, K.

K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: a Systematic Review,” Ann. Surg. Oncol. 19(10), 3236–3245 (2012).
[Crossref] [PubMed]

Evers, D. J.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

Falou, O.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Feld, M. S.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Fitzmaurice, M.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Gabrielson, E.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Gallagher, J.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Gallagher, J. E.

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

Gandhi, S.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Ganino, S.

Gardecki, J. A.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Geradts, J.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

Gibson, A.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Greenup, R. A.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

Groß, J.

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Haka, A. S.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Halter, R. J.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Hartov, A.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Hebden, J.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Hendriks, B. H. W.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

R. Nachabe, B. H. W. Hendriks, M. Van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy; benefit of extending the UV-VIS wavelength range to include 1000 to 1600nm,” Biomed. Opt. Express 1 (5), 1432–1442 (2010).
[Crossref]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Hicks, D.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Hsiang, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Ignatov, A.

H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
[Crossref] [PubMed]

Ignatov, T.

H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
[Crossref] [PubMed]

Ingvar, C.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Jacobs, L. K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Jalkanen, K. J.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Jiang, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Junker, M.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Kang, J. W.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

Keller, M. D.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Kelley, M. C.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Kennedy, S.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Kennedy, S. A.

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

Kerlikowske, K.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Klomp, H. M.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

Kogel, C.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Kogel, C. A.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Koloydenko, A.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Kong, K.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Krieger, M. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

Krishnaswamy, V.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Kueper, J.

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Lee, S. Y.

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Leproux, A.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Lester, S. C.

S. Sahoo and S. C. Lester, “Pathology of Breast Carcinomas After Neoadjuvant Chemotherapy: an Overview with Recommendations on Specimen Processing and Reporting,” Arch. Pathol. Lab. Med. 133(4), 633–642 (2009).
[PubMed]

Li, Z.

K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: a Systematic Review,” Ann. Surg. Oncol. 19(10), 3236–3245 (2012).
[Crossref] [PubMed]

Lin, E. H.

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

Lin, M.

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

Lindblom, P.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Lloyd, W. R.

Lucassen, G. W.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

Lue, N.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

Lyons, J.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Machleidt, A.

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Majumder, S. K.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Marinelli, A. W. K. S.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Marshek, C. L.

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref] [PubMed]

Martin, A. A.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Martinho, H. S.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Matlock, A.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

May Gonzalez, E. A.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

McKenna, B.

McLaren, C. E.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Meaney, P. M.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Mehta, R. S.

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

Menke-Pluymers, M.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Menna, S.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Meszoely, I. M.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Miglioretti, D. L.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Molenkamp, B. G.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

Mulvey, C. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

Mycek, M.-A.

Nachabe, R.

Nachabé, R.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Nazemi, J.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Nichols, B. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

Notingher, I.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

O’Sullivan, T. D.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Olivares, G. M.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Palmer, G. M.

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref] [PubMed]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Paulsen, K. D.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Pifferi, A.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Pogue, B. W.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Police, A. M.

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

Poplack, S. P.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Purushotham, A.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

Quarto, G.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

Rakha, E.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Ramalho, F. S.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Ramalho, L. N. Z.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Ramalingam, V.

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

Ramanujam, N.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref] [PubMed]

Raniero, L.

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Ratcliffe, S. J.

J. Shults and S. J. Ratcliffe, “Analysis of multi-level correlated data in the framework of generalized estimating equations via xtmultcorr procedures in Stata and qls functions in Matlab,” Stat. Interface 2(2), 187–196 (2009).
[Crossref]

Rizzo, E. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Roblyer, D.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Rosenkranz, K. M.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Ruers, T. J. M.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

Sadeghi-Naini, A.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Sahoo, S.

S. Sahoo and S. C. Lester, “Pathology of Breast Carcinomas After Neoadjuvant Chemotherapy: an Overview with Recommendations on Specimen Processing and Reporting,” Arch. Pathol. Lab. Med. 133(4), 633–642 (2009).
[PubMed]

Salomatina, E.

E. Salomatina and A. N. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref] [PubMed]

Sawyer, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Scheiman, J.

Schindler, C. E.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

Schneider, E. B.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Schwab, M. C.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Scott Carney, P.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Sebastian, M.

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

Shah, N.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Shults, J.

J. Shults and S. J. Ratcliffe, “Analysis of multi-level correlated data in the framework of generalized estimating equations via xtmultcorr procedures in Stata and qls functions in Matlab,” Stat. Interface 2(2), 187–196 (2009).
[Crossref]

Simeone, D.

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Spinelli, L.

Srinivasan, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabe, B. H. W. Hendriks, M. Van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy; benefit of extending the UV-VIS wavelength range to include 1000 to 1600nm,” Biomed. Opt. Express 1 (5), 1432–1442 (2010).
[Crossref]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Stomper, P. C.

P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
[Crossref] [PubMed]

Su, M. Y.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Su, M.-Y.

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

Svensson, T.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Swartling, J.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Tafra, L.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Tanko, J.

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Taroni, P.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012).
[Crossref] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

Tosteson, T. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Tran, W. T.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Tromberg, B. J.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Tsuchiya, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Vacek, P.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Vachon, C.

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

van der Mark, M. B.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Van der Voort, M.

R. Nachabe, B. H. W. Hendriks, M. Van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy; benefit of extending the UV-VIS wavelength range to include 1000 to 1600nm,” Biomed. Opt. Express 1 (5), 1432–1442 (2010).
[Crossref]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

van Sandick, J. W.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

van Veen, R. L. P.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Völker, R.

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Volynskaya, Z.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

Von Windheim, J. A.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

Vorauer, E.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Vrotsos, K. M.

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref] [PubMed]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Wells, W. A.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Wesseling, J.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

Wilke, L.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Wilke, L. G.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: a Systematic Review,” Ann. Surg. Oncol. 19(10), 3236–3245 (2012).
[Crossref] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

Wilson, R. H.

Wouters, M. W.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

Wright, F. C.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Yaffe, M. J.

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Yaroslavsky, A. N.

E. Salomatina and A. N. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref] [PubMed]

Yu, C.

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

Yu, H.

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

Zaabar, F.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Zhou, T.

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

Zysk, A. M.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

P. C. Stomper, D. J. D’Souza, P. A. DiNitto, and M. A. Arredondo, “Analysis of parenchymal density on mammograms in 1353 women 25-79 years old,” AJR Am. J. Roentgenol. 167(5), 1261–1265 (1996).
[Crossref] [PubMed]

Ann. Surg. Oncol. (2)

K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: a Systematic Review,” Ann. Surg. Oncol. 19(10), 3236–3245 (2012).
[Crossref] [PubMed]

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Arch. Gynecol. Obstet. (1)

J.-U. Blohmer, J. Tanko, J. Kueper, J. Groß, R. Völker, and A. Machleidt, “MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer,” Arch. Gynecol. Obstet. 294(2), 361–367 (2016).
[Crossref] [PubMed]

Arch. Pathol. Lab. Med. (1)

S. Sahoo and S. C. Lester, “Pathology of Breast Carcinomas After Neoadjuvant Chemotherapy: an Overview with Recommendations on Specimen Processing and Reporting,” Arch. Pathol. Lab. Med. 133(4), 633–642 (2009).
[PubMed]

Biomed. Opt. Express (3)

Biometrics (1)

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: a Nonparametric Approach,” Biometrics 44(3), 837–845 (1988).
[Crossref] [PubMed]

Breast Cancer Res. (3)

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Breast Cancer Res. Treat. (3)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov, “Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins,” Breast Cancer Res. Treat. 145(1), 129–136 (2014).
[Crossref] [PubMed]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref] [PubMed]

Cancer Res. (2)

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).
[Crossref] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[Crossref] [PubMed]

Clin. Lung Cancer (1)

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. W. Hendriks, J. Wesseling, and T. J. M. Ruers, “Diffuse Reflectance Spectroscopy: a New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies,” Clin. Lung Cancer 13(6), 424–431 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

J. Clin. Oncol. (1)

K. Kerlikowske, A. J. Cook, D. S. M. Buist, S. R. Cummings, C. Vachon, P. Vacek, and D. L. Miglioretti, “Breast Cancer Risk by Breast Density, Menopause, and Postmenopausal Hormone Therapy Use,” J. Clin. Oncol. 28(24), 3830–3837 (2010).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal Methods for Fluorescence and Diffuse Reflectance Measurements of Tissue Biopsy Samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref] [PubMed]

Magn. Reson. Imaging (1)

J.-H. Chen, H. Yu, M. Lin, R. S. Mehta, and M.-Y. Su, “Background Parenchymal Enhancement in the Contralateral Normal Breast of Patients Undergoing Neoadjuvant Chemotherapy Measured by DCE-MRI,” Magn. Reson. Imaging 31(9), 1465–1471 (2013).
[Crossref] [PubMed]

Med. Phys. (1)

A. Sadeghi-Naini, E. Vorauer, L. Chin, O. Falou, W. T. Tran, F. C. Wright, S. Gandhi, M. J. Yaffe, and G. J. Czarnota, “Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images,” Med. Phys. 42(11), 6130–6146 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[Crossref] [PubMed]

E. Salomatina and A. N. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref] [PubMed]

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Physiol. Meas. (1)

R. J. Halter, T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, “The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience,” Physiol. Meas. 30(6), S121–S136 (2009).
[Crossref] [PubMed]

PLoS One (4)

N. Lue, J. W. Kang, C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment,” PLoS One 7, e30887 (2012).

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins,” PLoS One 10(6), e0127525 (2015).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. E. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast,” PLoS One 7(12), e51418 (2012).
[Crossref] [PubMed]

Springerplus (1)

M. Sebastian, S. Akbari, B. Anglin, E. H. Lin, and A. M. Police, “The impact of use of an intraoperative margin assessment device on re-excision rates,” Springerplus 4(1), 198 (2015).
[Crossref] [PubMed]

Stat. Interface (1)

J. Shults and S. J. Ratcliffe, “Analysis of multi-level correlated data in the framework of generalized estimating equations via xtmultcorr procedures in Stata and qls functions in Matlab,” Stat. Interface 2(2), 187–196 (2009).
[Crossref]

Theor. Chem. Acc. (1)

L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, and A. A. Martin, “In and ex vivo breast disease study by Raman spectroscopy,” Theor. Chem. Acc. 130(4-6), 1239–1247 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic image of data acquisition. A cannula with the optical needle are placed in normal tissue to acquire spectra at the first measurement location (a) and subsequently at the second measurement location (b). Afterwards the second measurement location is marked with a twistmarker (c). The optical needle is than again introduced to obtain measurements of tumor tissue (d & e) and similarly the second tumor measurement is marked with a twistmarker (f).

Fig. 2
Fig. 2

Boxplot and scatter plot of the five parameters that were significant in the GEE analysis (F/W-ratio, β-carotene, blood, scattering at 800nm, and fraction Mie scattering). The figures comprise the medians from all measurement locations categorized based on the type of tissue (normal or tumor) and tissue status (in vivo or ex vivo).

Fig. 3
Fig. 3

ROC curves of the optical parameters that were significant in the GEE analysis. The dotted lines around the ROC represent the 95% confidence intervals.

Fig. 4
Fig. 4

The ROC curves of the normalized data of the optical parameters. The dotted lines represent the 95% confidence intervals.

Fig. 5
Fig. 5

The F/W-ratio ROC curves of the in vivo measurements (green) and the ex vivo measurements (red). The dotted lines represent the 95% confidence interval.

Tables (2)

Tables Icon

Table 1 Patient characteristics

Tables Icon

Table 2 β-values of the covariates in the GEE analysis. An asterisk indicates significance.

Metrics