Abstract

Recent functional near-infrared spectroscopy (fNIRS) instrumentation encompasses several dozen of optodes to enable reconstructing a hemodynamic image of the entire cerebral cortex. Despite its potential clinical applicability, widespread use of fNIRS with human subjects is currently limited by unresolved issues, namely the collection from the entirety of optical channels of signals with a signal-to-noise ratio (SNR) sufficient to carry out a reliable estimation of cortical hemodynamics, and the considerable amount of time that placing numerous optodes take with individuals for whom achieving good optical coupling to the scalp is difficult due to thick or dark hair. To address these issues, we developed a numerical method that: 1) at the channel level, computes an objective measure of the signal-to-noise ratio (SNR) related to its optical coupling to the scalp, akin to electrode conductivity used in electroencephalography (EEG), and 2) at the optode level, determines and displays the coupling status of all individual optodes in real time on a model of a human head. This approach aims to shorten the pre-acquisition preparation time by visually displaying which optodes require further adjustment for optimum scalp coupling, and to maximize the signal-to-noise ratio (SNR) of all optical channels contributing to the functional hemodynamic mapping. The methodology described in this paper has been implemented in a software tool named PHOEBE (placing headgear optodes efficiently before experimentation) that is freely available for use by the fNIRS community.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving optical contact for functional near‑infrared brain spectroscopy and imaging with brush optodes

Bilal Khan, Chester Wildey, Robert Francis, Fenghua Tian, Mauricio R. Delgado, Hanli Liu, Duncan MacFarlane, and George Alexandrakis
Biomed. Opt. Express 3(5) 878-898 (2012)

Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS)

F. Scarpa, S. Cutini, P. Scatturin, R. Dell’Acqua, and G. Sparacino
Opt. Express 18(25) 26550-26568 (2010)

Functional near-infrared spectroscopy caps for brain activity monitoring: a review

Amal Kassab, Jérôme Le Lan, Phetsamone Vannasing, and Mohamad Sawan
Appl. Opt. 54(3) 576-586 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  2. B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
    [Crossref] [PubMed]
  3. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
    [Crossref] [PubMed]
  4. P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
    [PubMed]
  5. L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
    [Crossref] [PubMed]
  6. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  7. C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
    [Crossref] [PubMed]
  8. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
    [Crossref] [PubMed]
  9. C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
    [Crossref] [PubMed]
  10. T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
    [Crossref] [PubMed]

2016 (1)

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

2015 (2)

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

2014 (2)

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (1)

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

2010 (1)

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

2009 (1)

2001 (1)

T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
[Crossref] [PubMed]

Aasted, C. M.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Abaya, H.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

Aichelburg, C.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Beauchamp, M. S.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

Becerra, L.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Boas, D. A.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

Borsook, D.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Bortfeld, H.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

Burgess, P.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Cooper, R. J.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Culver, J. P.

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

Dan, I.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Diamond, S. G.

Dubb, J.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Ferree, T. C.

T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
[Crossref] [PubMed]

Franceschini, M. A.

Gilbert, S.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Habermehl, C.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Hamilton, A.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Holtze, S.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Huppert, T. J.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Koch, S. P.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Larky, J.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

Lind, F.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Loy, M.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

Luu, P.

T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Mehnert, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Merla, A.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Obrig, H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Oghalai, J. S.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

Olds, C.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

Petkov, M. P.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Pinti, P.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Pollonini, L.

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

Power, S.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Russell, G. S.

T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
[Crossref] [PubMed]

Schmitz, C. H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Steinbrink, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Swingler, E.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Tachtsidis, I.

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Tsuzuki, D.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Tucker, D. M.

T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
[Crossref] [PubMed]

White, B. R.

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Yücel, M. A.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Clin. Neurophysiol. (1)

T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode impedance, infection risk, and EEG data quality,” Clin. Neurophysiol. 112(3), 536–544 (2001).
[Crossref] [PubMed]

Ear Hear. (1)

C. Olds, L. Pollonini, H. Abaya, J. Larky, M. Loy, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation,” Ear Hear. 37(3), e160–e172 (2016).
[Crossref] [PubMed]

Hear. Res. (1)

L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear. Res. 309, 84–93 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

J. Vis. Exp. (1)

P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, A. Hamilton, S. Gilbert, P. Burgess, and I. Tachtsidis, “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks,” J. Vis. Exp. 106(106), 1–13 (2015).
[PubMed]

Neuroimage (2)

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Neurophotonics (1)

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical layout designed for measuring cortical activity in cochlear implant users (REF) and consisting of two bilateral probes with 8 sources (red dots) and 12 detectors (black dots) each, laid out on a rectangular grid with 15 mm spacing. (b) Connected graph of the optical layout, where numbered nodes represents the 40 optodes (circle sources and square detectors) and connected edges represent optical channels with optode inter-distance between 30mm and 45mm (only few selected ei,j are labeled for simplicity).

Fig. 2
Fig. 2

Flow chart of the iterative algorithm.

Fig. 3
Fig. 3

Raw (a,b), normalized (c,d) and cross-correlated signals (e,f) of clean (a) and noisy (b) optical channels. SCI was close to 1 in a clean channel (e), whereas it dropped to 0.23 in a noisy channel (f). Power spectra of cross-correlated signals of clean (g) and noisy channels (h) have substantially different peak values (0.16 vs. 0.01) and spectral profile.

Fig. 4
Fig. 4

Raw (a,b), normalized (c,d) and cross-correlated signals (e,f) of an optical channel affected by a movement artifact (a) and of a channel where substantial noise was present only at the shorter wavelength (b). Power spectra of cross-correlated signals (g,h). In this case, SCI or peak power alone falsely identified the optical channels as clean, where the combination of both parameters allows to detect the presence of noise or movement artifact.

Fig. 5
Fig. 5

(a) Example of graph representing an optical layout with 4 sources (circles) and 3 detectors (squares) connected by weighted edges with arbitrary value (0 = low SNR, 1 = high SNR), and corresponding system of Boolean equations. After solving the system for (), nodes are colored according to the univocal binary value of each variable (1 = coupled, green, 0 = uncoupled, red) or left undetermined (any = yellow). After adjustment of optode 4, the system is updated and solved univocally by (1,1,0,0,0,0,0).

Fig. 6
Fig. 6

Screenshot of PHOEBE displaying the scalp coupling of sources (circles) and detectors (squares) of the 40-optode layout in different colors: red (coupled), green (uncoupled) and yellow (undetermined).

Fig. 7
Fig. 7

Flow chart of PHOBE operations between launching and the beginning of iterative monitoring.

Metrics