Abstract

Despite the trend to pair white light endoscopy with secondary image modalities for in vivo characterization of suspicious lesions, challenges remain to co-register such data. We present an algorithm to co-register two different optical imaging modalities as a mother-daughter endoscopy pair. Using white light cystoscopy (mother) and optical coherence tomography (OCT) (daughter) as an example, we developed the first forward-viewing OCT endoscope that fits in the working channel of flexible cystoscopes and demonstrated our algorithm’s performance with optical phantom and clinical imaging data. The ability to register multimodal data opens opportunities for advanced analysis in cancer imaging applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D reconstruction of cystoscopy videos for comprehensive bladder records

Kristen L. Lurie, Roland Angst, Dimitar V. Zlatev, Joseph C. Liao, and Audrey K. Ellerbee Bowden
Biomed. Opt. Express 8(4) 2106-2123 (2017)

Multimodal 3D cancer-mimicking optical phantom

Gennifer T. Smith, Kristen L. Lurie, Dimitar V. Zlatev, Joseph C. Liao, and Audrey K. Ellerbee Bowden
Biomed. Opt. Express 7(2) 648-662 (2016)

Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography

Qinggong Tang, Jianting Wang, Aaron Frank, Jonathan Lin, Zhifang Li, Chao-wei Chen, Lily Jin, Tongtong Wu, Bruce D. Greenwald, Hiroshi Mashimo, and Yu Chen
Biomed. Opt. Express 7(12) 5218-5232 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
    [Crossref] [PubMed]
  2. G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
    [Crossref] [PubMed]
  3. S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
    [Crossref] [PubMed]
  4. K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
  5. K. L. Lurie, A. A. Gurjarpadhye, E. J. Seibel, and A. K. Ellerbee, “Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography,” Opt. Lett. 40, 3165–3168 (2015).
    [Crossref] [PubMed]
  6. B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
    [Crossref]
  7. S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
  8. M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
  9. P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
    [PubMed]
  10. P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
    [PubMed]
  11. H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
    [Crossref] [PubMed]
  12. C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
    [Crossref] [PubMed]
  13. E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
    [Crossref]
  14. E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
    [Crossref] [PubMed]
  15. J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
    [Crossref] [PubMed]
  16. C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
    [Crossref]
  17. M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).
  18. M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.
  19. C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
    [Crossref]
  20. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).
  21. H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
    [Crossref]
  22. K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
    [Crossref]
  23. C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).
  24. R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
  25. M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
    [Crossref] [PubMed]
  26. J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
    [PubMed]

2015 (1)

2014 (2)

M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

2013 (2)

M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref] [PubMed]

P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]

2012 (1)

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

2011 (1)

E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]

2010 (1)

C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]

2009 (6)

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref] [PubMed]

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

2008 (2)

S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref] [PubMed]

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref] [PubMed]

2006 (2)

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).

2005 (1)

C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]

2002 (1)

E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref] [PubMed]

1999 (1)

R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).

1990 (1)

R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref] [PubMed]

Agarwal, N.

P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]

Agenant, M.

M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref] [PubMed]

Allain, B.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Angst, R.

K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).

Atasoy, S.

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Bailey, T.

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]

Bhalla, R.

H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref] [PubMed]

Biagioli, M. C.

P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]

Bolitho, M.

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).

Bosch, J. L. H. R.

M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref] [PubMed]

Bowden, A. K.

K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).

Clark, P.

P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]

Cook, R. J.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Cothren, R. M.

R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref] [PubMed]

Cryer, J. E.

R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).

De Mathelin, M.

C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]

Doignon, C.

C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]

Du, C. B.

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

Durrant-Whyte, H.

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]

Ellerbee, A. K.

K. L. Lurie, A. A. Gurjarpadhye, E. J. Seibel, and A. K. Ellerbee, “Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography,” Opt. Lett. 40, 3165–3168 (2015).
[Crossref] [PubMed]

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

Elson, D.

P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]

Engelbrecht, R.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Feussner, H.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Forster, C. Q.

C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).

Giannarou, S.

M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).

P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Gladkova, N. D.

E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref] [PubMed]

Glocker, B.

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Goesele, M.

M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.

Goh, A.

E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]

Goh, A. C.

S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref] [PubMed]

Graebling, P.

C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]

Gurjarpadhye, A. A.

Hartley, R.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).

Hawkes, D. J.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Höller, K.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Hoppe, H.

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).

Hornegger, J.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Hu, M.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Jensen, K. C.

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

Johns, E.

M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).

Jones, S. N. E.

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

Kazhdan, M.

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).

Khan, S. A.

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

Klatte, T.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Koomen, W.

M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref] [PubMed]

Lerner, S.

E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]

Lerner, S. P.

S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref] [PubMed]

Liao, J. C.

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).

Lingley-Papadopoulos, C. A.

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref] [PubMed]

Loew, M. H.

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref] [PubMed]

Lovat, L. B.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Lurie, K. L.

K. L. Lurie, A. A. Gurjarpadhye, E. J. Seibel, and A. K. Ellerbee, “Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography,” Opt. Lett. 40, 3165–3168 (2015).
[Crossref] [PubMed]

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).

Mach, K. E.

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

Manyak, M. J.

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref] [PubMed]

Marberger, M.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Mateus, D.

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Mauermann, J.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Meining, A.

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Moehrle, N.

M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.

Mountney, P.

P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]

Navab, N.

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Noordmans, H.-J.

M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref] [PubMed]

Ourselin, S.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Penne, J.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Pollefeys, M.

C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]

Remzi, M.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Ren, H.

H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref] [PubMed]

Richards-Kortum, R.

R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref] [PubMed]

Sanchez, E.

E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]

Schmauss, B.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Schmidbauer, J.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Schneider, A.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Schrauder, T.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Seibel, E. J.

Shah, M.

R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).

Shen, S. S.

S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref] [PubMed]

Sivak, M. V.

R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref] [PubMed]

Smith, G. T.

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

Soni, S.

E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]

Sonn, G. A.

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

Streltsova, O. S.

E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref] [PubMed]

Stürmer, M.

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Susani, M.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Tarin, T. V.

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

Tozzi, C.

C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).

Tresser, N. J.

S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref] [PubMed]

Tsai, P.-s.

R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).

Vercauteren, T.

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Waechter, M.

M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.

Waldert, M.

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Waltzer, W. C.

H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref] [PubMed]

Yang, G.

M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).

Yang, G.-Z.

P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

Ye, M.

M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).

Zach, C.

C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]

Zagaynova, E. V.

E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref] [PubMed]

Zara, J. M.

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).

Zisserman, A.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).

Zlatev, D. Z.

K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).

Eur. Urol. (1)

J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref] [PubMed]

IEEE Robot Autom. Mag. (1)

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]

J Urol (1)

G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref] [PubMed]

J. Natl. Compr. Canc. Netw. (1)

P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]

J. Urol. (1)

E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref] [PubMed]

Lect. Notes Comput. Sci. (1)

C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]

Med. Image Anal. (1)

B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]

Med. Image Comput. Comput. Assist. Interv. (2)

P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]

Med. Image Comput. Comput. Interv. (2)

S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).

M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).

Opt. Lett. (1)

PLOS ONE (1)

M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref] [PubMed]

Real-Time Imaging (1)

C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]

Rev. Lit. Arts Am. (1)

R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).

Symp. Geom. Process (1)

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).

Urology (3)

H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref] [PubMed]

E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]

S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref] [PubMed]

Other (4)

K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).

M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).

C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

WLC and OCT system setup showing optical and electronic system design. The inset shows a cross-section of the distal end of the OCT endoscope. DAQ: data acquisition device, GRIN: graded index lens, PC: polarization controller, PZT: piezo-electric transducer.

Fig. 2
Fig. 2

Registration pipeline overview comprising inputs and outputs of the four main steps (black boxes) of the algorithm.

Fig. 3
Fig. 3

(a) Side view and (b) bottom view depicting the relationship between OCT shaft, WLC shaft and OCT footprint and their respective coordinate systems (c) Appearance of OCT endoscope in WLC image with important features indicated including shaft lines l1 and l2 and regions ri in which the shaft lines split the plane. Although the shaft edges are parallel in 3D space, the shaft lines intersect in the WLC image due to the perspective projection of the WLC.

Fig. 4
Fig. 4

Radii and center points of OCT endoscope as a function of the distance the OCT endoscope protrudes from the end of the WLC (“protrusion distance,” d): (a) Representative WLC image with shaft lines and OCT footprints. (b) Overlay of footprints on WLC image mask. Trends and data for (c) footprint radius and (d) center point in pixels. Error bars and ellipses show ±1σ from mean. Standard deviation for (e) footprint radius and (f) center position in μm from trend.

Fig. 5
Fig. 5

Example reconstruction and registration for in vivo bladder: (a) full reconstruction with registered OCT volumes (green) (b) zoomed in region (yellow box), and (c) original WLC images that correspond to two interest frame pairs. Color differences between reconstruction and original images are due to image preprocessing (Step A) that reduces lighting gradients. The yellow box in (a–b) represents an area of approximately 1 cm2. Arrows indicate similarities between reconstructed texture and original images.

Fig. 6
Fig. 6

Example reconstruction and registration for phantom bladder : (a) full reconstruction overlaid with registered OCT volumes shown as the enface projections (green), (b) zoomed in region of complete reconstruction, and (c) example interest frame pairs from a tissue region [1] and brown-circle region [2]. In (b), the white circles in the OCT en face images correspond to the OCT B-scans shown in (c). The color differences between reconstruction and original images are due to an image-preprocessing algorithm (Step A), which causes the brown circles to appear pink. To emphasize the brown circles, they are outlined using a blue dotted line. The yellow box in (a–b) represents an area of 6.6 × 6.1 mm2. The blue boxes in (c) represents an area of 100 μm2. Arrows indicate similar vasculature between reconstructed texture and original WLC images.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M scope init ( i , j ) = { 1 I B / R > threshold 0 otherwise ,
p WL = KT OCT WL p OCT ,
Q OCT = [ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 r scope 2 ] ,
Q WL = T OCT WL T Q OCT T OCT WL = [ Q 3 × 3 q q T q 4 × 4 ] ,
p RI = KT WL ( i ) RI ( i ) T OCT ( i ) WL ( i ) p OCT .

Metrics