Abstract

Non-lethal macular diseases greatly impact patients’ life quality, and will cause vision loss at the late stages. Visual inspection of the optical coherence tomography (OCT) images by the experienced clinicians is the main diagnosis technique. We proposed a computer-aided diagnosis (CAD) model to discriminate age-related macular degeneration (AMD), diabetic macular edema (DME) and healthy macula. The linear configuration pattern (LCP) based features of the OCT images were screened by the Correlation-based Feature Subset (CFS) selection algorithm. And the best model based on the sequential minimal optimization (SMO) algorithm achieved 99.3% in the overall accuracy for the three classes of samples.

© 2016 Optical Society of America

PDF Article
OSA Recommended Articles
Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images

Pratul P. Srinivasan, Leo A. Kim, Priyatham S. Mettu, Scott W. Cousins, Grant M. Comer, Joseph A. Izatt, and Sina Farsiu
Biomed. Opt. Express 5(10) 3568-3577 (2014)

Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach

Mark J. J. P. van Grinsven, Thomas Theelen, Leonard Witkamp, Job van der Heijden, Johannes P. H. van de Ven, Carel B. Hoyng, Bram van Ginneken, and Clara I. Sánchez
Biomed. Opt. Express 7(3) 709-725 (2016)

Automated segmentation of subretinal layers for the detection of macular edema

Taimur Hassan, M. Usman Akram, Bilal Hassan, Adeel M. Syed, and Shafaat Ahmed Bazaz
Appl. Opt. 55(3) 454-461 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
    [Crossref] [PubMed]
  2. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK Incorporated, 2004).
  3. G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
    [PubMed]
  4. P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
    [Crossref] [PubMed]
  5. K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
    [Crossref] [PubMed]
  6. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
    [Crossref] [PubMed]
  7. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  8. M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
    [Crossref] [PubMed]
  9. S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
    [Crossref] [PubMed]
  10. G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
    [PubMed]
  11. K. Horie-Inoue and S. Inoue, “Genomic aspects of age-related macular degeneration,” Biochem. Biophys. Res. Commun. 452(2), 263–275 (2014).
    [Crossref] [PubMed]
  12. J. Merl-Pham, F. Gruhn, and S. M. Hauck, “Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells,” Adv. Exp. Med. Biol. 854, 785–791 (2016).
    [Crossref] [PubMed]
  13. D. Iejima, M. Nakayama, and T. Iwata, “HTRA1 Overexpression Induces the Exudative Form of Age-related Macular Degeneration,” J. Stem Cells 10(3), 193–203 (2015).
    [PubMed]
  14. J. R. Evans and J. G. Lawrenson, “Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration,” Cochrane Database Syst. Rev. 11, CD000254 (2012).
    [PubMed]
  15. M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
    [Crossref] [PubMed]
  16. P. J. Kertes and T. M. Johnson, Evidence-Based Eye Care (Lippincott Williams & Wilkins, 2007).
  17. R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
    [Crossref] [PubMed]
  18. M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
    [Crossref] [PubMed]
  19. B. Hassan, G. Raja, T. Hassan, and M. Usman Akram, “Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images,” J. Opt. Soc. Am. A 33(4), 455–463 (2016).
    [Crossref] [PubMed]
  20. A. Albarrak, F. Coenen, and Y. Zheng, “Age-related Macular Degeneration Identification In Volumetric Optical Coherence Tomography Using Decomposition and Local Feature Extraction,” in The 17th Annual Conference in Medical Image Understanding and Analysis (MIUA)(2013), pp. 59–64.
  21. Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
    [Crossref] [PubMed]
  22. P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
    [Crossref] [PubMed]
  23. S. Mehta, “Age-Related Macular Degeneration,” Prim. Care 42(3), 377–391 (2015).
    [Crossref] [PubMed]
  24. M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
    [Crossref] [PubMed]
  25. I. I. Esener, S. Ergin, and T. Yuksel, “A new ensemble of features for breast cancer diagnosis,” in International Convention on Information and Communication Technology, Electronics and Microelectronics(2015).
  26. E. N. G. T. K. Senthil Kumar and R. Umamaheswari, “Automatic lung nodule segmentation using autoseed region growing with morphological masking (ARGMM),” EuroMediterranean Biomedical Journal 10, 99–119 (2015).
  27. V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
    [Crossref] [PubMed]
  28. G. Z. Yimo Guo, Matti Pietikäinen, “Texture Classification using a Linear Configuration Model based Descriptor,” in The 22nd British Machine Vision Conference(BMVA Press, University of Dundee, 2011), pp. 119.111–119.110.
  29. T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” in Pattern Recognition, 1994.Vol. 1- Conference A: Computer Vision & Image Processing.,Proceedings of the 12th IAPR International Conference on(1994), pp. 582–585 vol.581.
  30. A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,” Int. J. Comput. Vis. 42(3), 145–175 (2001).
    [Crossref]
  31. C. Schmid, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” CVPR 2006, 2169–2178 (2006).
  32. R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
    [Crossref] [PubMed]
  33. M. Vidyasagar, “Machine learning methods in the computational biology of cancer,” Proc. Math. Phys. Eng. Sci. 470(2167), 20140081 (2014).
    [Crossref] [PubMed]
  34. N. Z. Hamilton, “Correlation-based feature subset selection for machine learning,” (1998).
  35. Y. Guo, G. Zhao, and M. Pietikäinen, “Texture Classification using a Linear Configuration Model based Descriptor,” in BMVC(Citeseer, 2011), pp. 1–10.
  36. S. Ergin and O. Kilinc, “A new feature extraction framework based on wavelets for breast cancer diagnosis,” Comput. Biol. Med. 51, 171–182 (2014).
    [Crossref] [PubMed]
  37. M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
    [Crossref] [PubMed]
  38. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
    [Crossref]
  39. P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting (John Wiley & Sons, 1994).
  40. Y. Goldberg and M. Elhadad, “splitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications,” in Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers(Association for Computational Linguistics, 2008), pp. 237–240.
  41. A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
    [Crossref] [PubMed]
  42. I. Rish, J. Hellerstein, and J. Thathachar, “An analysis of data characteristics that affect naive Bayes performance,” IBM TJ Watson Research Center 30 (2001).
  43. N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria, “Decision tree analysis on j48 algorithm for data mining,” Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering 3 (2013).
  44. L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
    [Crossref]
  45. T. C. Smith and E. Frank, “Introducing Machine Learning Concepts with WEKA,” in Statistical Genomics: Methods and Protocols, E. Mathé, and S. Davis, eds. (Springer New York, New York, NY, 2016), pp. 353–378.
  46. C.-c. Chang and C.-j. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2, 5714–5778 (2011).

2016 (4)

J. Merl-Pham, F. Gruhn, and S. M. Hauck, “Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells,” Adv. Exp. Med. Biol. 854, 785–791 (2016).
[Crossref] [PubMed]

B. Hassan, G. Raja, T. Hassan, and M. Usman Akram, “Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images,” J. Opt. Soc. Am. A 33(4), 455–463 (2016).
[Crossref] [PubMed]

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

2015 (7)

S. Mehta, “Age-Related Macular Degeneration,” Prim. Care 42(3), 377–391 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

E. N. G. T. K. Senthil Kumar and R. Umamaheswari, “Automatic lung nodule segmentation using autoseed region growing with morphological masking (ARGMM),” EuroMediterranean Biomedical Journal 10, 99–119 (2015).

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

D. Iejima, M. Nakayama, and T. Iwata, “HTRA1 Overexpression Induces the Exudative Form of Age-related Macular Degeneration,” J. Stem Cells 10(3), 193–203 (2015).
[PubMed]

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

2014 (6)

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

K. Horie-Inoue and S. Inoue, “Genomic aspects of age-related macular degeneration,” Biochem. Biophys. Res. Commun. 452(2), 263–275 (2014).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

M. Vidyasagar, “Machine learning methods in the computational biology of cancer,” Proc. Math. Phys. Eng. Sci. 470(2167), 20140081 (2014).
[Crossref] [PubMed]

S. Ergin and O. Kilinc, “A new feature extraction framework based on wavelets for breast cancer diagnosis,” Comput. Biol. Med. 51, 171–182 (2014).
[Crossref] [PubMed]

P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
[Crossref] [PubMed]

2012 (2)

J. R. Evans and J. G. Lawrenson, “Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration,” Cochrane Database Syst. Rev. 11, CD000254 (2012).
[PubMed]

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

2011 (3)

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

C.-c. Chang and C.-j. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2, 5714–5778 (2011).

2010 (2)

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

2008 (2)

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

2006 (1)

C. Schmid, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” CVPR 2006, 2169–2178 (2006).

2004 (1)

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

2003 (1)

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

2001 (3)

A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,” Int. J. Comput. Vis. 42(3), 145–175 (2001).
[Crossref]

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
[Crossref]

1996 (1)

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Abramoff, M. D.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Acharya, U. R.

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Bailey, S. T.

Balkau, B.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Benjamin, S. M.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Bhandary, S. V.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

Bhattacharyya, C.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
[Crossref]

Boyle, J. P.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Breiman, L.

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

Casazza, G.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Chandran, V.

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Chang, C.-c.

C.-c. Chang and C.-j. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2, 5714–5778 (2011).

Chen, M.

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

Chiu, S. J.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Chou, S. M.

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

Chua, C. K.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Coker, J. G.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Comer, G. M.

Cousins, S. W.

Das, R. R.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

de Courten, M. P.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Elhadad, M.

Y. Goldberg and M. Elhadad, “splitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications,” in Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers(Association for Computational Linguistics, 2008), pp. 237–240.

Engelgau, M. M.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Ergin, S.

S. Ergin and O. Kilinc, “A new feature extraction framework based on wavelets for breast cancer diagnosis,” Comput. Biol. Med. 51, 171–182 (2014).
[Crossref] [PubMed]

I. I. Esener, S. Ergin, and T. Yuksel, “A new ensemble of features for breast cancer diagnosis,” in International Convention on Information and Communication Technology, Electronics and Microelectronics(2015).

Esener, I. I.

I. I. Esener, S. Ergin, and T. Yuksel, “A new ensemble of features for breast cancer diagnosis,” in International Convention on Information and Communication Technology, Electronics and Microelectronics(2015).

Evans, J. R.

J. R. Evans and J. G. Lawrenson, “Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration,” Cochrane Database Syst. Rev. 11, CD000254 (2012).
[PubMed]

Farsiu, S.

Ferreras, A.

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Feuer, W. J.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Folgar, F. A.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Ford, E. S.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Fujimoto, J. G.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Fujita, H.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

Gao, S. S.

Garvin, M. K.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Ge, R.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

Geiss, L. S.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Ghista, D. N.

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

Goldberg, Y.

Y. Goldberg and M. Elhadad, “splitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications,” in Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers(Association for Computational Linguistics, 2008), pp. 237–240.

Gregg, E. W.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Gregori, G.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Gregori, N. Z.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Gruhn, F.

J. Merl-Pham, F. Gruhn, and S. M. Hauck, “Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells,” Adv. Exp. Med. Biol. 854, 785–791 (2016).
[Crossref] [PubMed]

Hamilton, N. Z.

N. Z. Hamilton, “Correlation-based feature subset selection for machine learning,” (1998).

Harper, C. A.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Hassan, B.

Hassan, T.

Hauck, S. M.

J. Merl-Pham, F. Gruhn, and S. M. Hauck, “Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells,” Adv. Exp. Med. Biol. 854, 785–791 (2016).
[Crossref] [PubMed]

Hee, M. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Hertzmark, E.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Heussen, F. M.

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Hogg, R.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Honrubia, F. M.

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Horie-Inoue, K.

K. Horie-Inoue and S. Inoue, “Genomic aspects of age-related macular degeneration,” Biochem. Biophys. Res. Commun. 452(2), 263–275 (2014).
[Crossref] [PubMed]

Huang, D.

Hwang, T. S.

Iejima, D.

D. Iejima, M. Nakayama, and T. Iwata, “HTRA1 Overexpression Induces the Exudative Form of Age-related Macular Degeneration,” J. Stem Cells 10(3), 193–203 (2015).
[PubMed]

Imperatore, G.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Inoue, S.

K. Horie-Inoue and S. Inoue, “Genomic aspects of age-related macular degeneration,” Biochem. Biophys. Res. Commun. 452(2), 263–275 (2014).
[Crossref] [PubMed]

Ishikawa, H.

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

Iwata, T.

D. Iejima, M. Nakayama, and T. Iwata, “HTRA1 Overexpression Induces the Exudative Form of Age-related Macular Degeneration,” J. Stem Cells 10(3), 193–203 (2015).
[PubMed]

Izatt, J. A.

Jia, Y.

Kardon, R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Keane, P. A.

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Keerthi, S. S.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
[Crossref]

Kilinc, O.

S. Ergin and O. Kilinc, “A new feature extraction framework based on wavelets for breast cancer diagnosis,” Comput. Biol. Med. 51, 171–182 (2014).
[Crossref] [PubMed]

Kim, L. A.

Koh, J. E.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Kwon, Y. H.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

Larrosa, J. M.

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Laude, A.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Lawrenson, J. G.

J. R. Evans and J. G. Lawrenson, “Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration,” Cochrane Database Syst. Rev. 11, CD000254 (2012).
[PubMed]

Lee, K.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

Li, X. T.

Liakopoulos, S.

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Lim, C. M.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Lin, C.-j.

C.-c. Chang and C.-j. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2, 5714–5778 (2011).

Liu, L.

Liu, Y. Y.

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

Lujan, B. J.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Luo, Y.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

Ma, D.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

Mai, G.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

McCarty, D. J.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Mehta, S.

S. Mehta, “Age-Related Macular Degeneration,” Prim. Care 42(3), 377–391 (2015).
[Crossref] [PubMed]

Menchini, F.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Meng, Q.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

Merl-Pham, J.

J. Merl-Pham, F. Gruhn, and S. M. Hauck, “Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells,” Adv. Exp. Med. Biol. 854, 785–791 (2016).
[Crossref] [PubMed]

Mettu, P. S.

Michelessi, M.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Mokdad, A. H.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Mookiah, M. R.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Murthy, K. R. K.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
[Crossref]

Nakayama, M.

D. Iejima, M. Nakayama, and T. Iwata, “HTRA1 Overexpression Induces the Exudative Form of Age-related Macular Degeneration,” J. Stem Cells 10(3), 193–203 (2015).
[PubMed]

Narayan, K. M.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Ng, E. Y.

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Nicholas, P.

Niemeijer, M.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

Noronha, K.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

O’Connell, R. V.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Oliva, A.

A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,” Int. J. Comput. Vis. 42(3), 145–175 (2001).
[Crossref]

Pablo, L. E.

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Pajarín, A. B.

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Patel, P. J.

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Pechauer, A. D.

Pedut-Kloizman, T.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Polo, V.

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Puliafito, C. A.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Raja, G.

Rehg, J. M.

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

Rios-Burrows, N.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Rosenfeld, P. J.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Saaddine, J. B.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Sadda, S. R.

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Schmid, C.

C. Schmid, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” CVPR 2006, 2169–2178 (2006).

Schuman, J. S.

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Senthil Kumar, E. N. G. T. K.

E. N. G. T. K. Senthil Kumar and R. Umamaheswari, “Automatic lung nodule segmentation using autoseed region growing with morphological masking (ARGMM),” EuroMediterranean Biomedical Journal 10, 99–119 (2015).

Shaw, J. E.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Shevade, S. K.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
[Crossref]

Sonka, M.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Srinivasan, P. P.

Sudarshan, V. K.

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

Sun, G.

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

Swanson, E. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Tan, J. H.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Tan, R. S.

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

Tapp, R. J.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Taylor, H. R.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Tierney, E. F.

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Tong, L.

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

Torralba, A.

A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,” Int. J. Comput. Vis. 42(3), 145–175 (2001).
[Crossref]

Toth, C. A.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Tufail, A.

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Umamaheswari, R.

E. N. G. T. K. Senthil Kumar and R. Umamaheswari, “Automatic lung nodule segmentation using autoseed region growing with morphological masking (ARGMM),” EuroMediterranean Biomedical Journal 10, 99–119 (2015).

Usman Akram, M.

Vidyasagar, M.

M. Vidyasagar, “Machine learning methods in the computational biology of cancer,” Proc. Math. Phys. Eng. Sci. 470(2167), 20140081 (2014).
[Crossref] [PubMed]

Virgili, G.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Wang, F.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Wang, G.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

Wang, J.

Wang, X.

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Welborn, T. A.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

Wilkins, J. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Wilson, D. J.

Wollstein, G.

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Yehoshua, Z.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Yuan, E.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Yuksel, T.

I. I. Esener, S. Ergin, and T. Yuksel, “A new ensemble of features for breast cancer diagnosis,” in International Convention on Information and Communication Technology, Electronics and Microelectronics(2015).

Zhang, M.

Zhou, F.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

Zhou, M.

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

Zimmet, P. Z.

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

ACM Trans. Intell. Syst. Technol. (1)

C.-c. Chang and C.-j. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2, 5714–5778 (2011).

Adv. Exp. Med. Biol. (1)

J. Merl-Pham, F. Gruhn, and S. M. Hauck, “Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells,” Adv. Exp. Med. Biol. 854, 785–791 (2016).
[Crossref] [PubMed]

Ann. Intern. Med. (1)

M. M. Engelgau, L. S. Geiss, J. B. Saaddine, J. P. Boyle, S. M. Benjamin, E. W. Gregg, E. F. Tierney, N. Rios-Burrows, A. H. Mokdad, E. S. Ford, G. Imperatore, and K. M. Narayan, “The evolving diabetes burden in the United States,” Ann. Intern. Med. 140(11), 945–950 (2004).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

A. Ferreras, L. E. Pablo, A. B. Pajarín, J. M. Larrosa, V. Polo, and F. M. Honrubia, “Logistic regression analysis for early glaucoma diagnosis using optical coherence tomography,” Arch. Ophthalmol. 126(4), 465–470 (2008).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

K. Horie-Inoue and S. Inoue, “Genomic aspects of age-related macular degeneration,” Biochem. Biophys. Res. Commun. 452(2), 263–275 (2014).
[Crossref] [PubMed]

BioMed Res. Int. (1)

M. Zhou, Y. Luo, G. Sun, G. Mai, and F. Zhou, “Constraint Programming Based Biomarker Optimization,” BioMed Res. Int. 2015, 910515 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

BMC Bioinformatics (1)

R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou, “McTwo: a two-step feature selection algorithm based on maximal information coefficient,” BMC Bioinformatics 17(1), 142 (2016).
[Crossref] [PubMed]

Cochrane Database Syst. Rev. (2)

J. R. Evans and J. G. Lawrenson, “Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration,” Cochrane Database Syst. Rev. 11, CD000254 (2012).
[PubMed]

G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, and M. Michelessi, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy,” Cochrane Database Syst. Rev. 1, CD008081 (2015).
[PubMed]

Comput. Biol. Med. (4)

M. R. Mookiah, U. R. Acharya, J. E. Koh, V. Chandran, C. K. Chua, J. H. Tan, C. M. Lim, E. Y. Ng, K. Noronha, L. Tong, and A. Laude, “Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images,” Comput. Biol. Med. 53, 55–64 (2014).
[Crossref] [PubMed]

M. R. Mookiah, U. R. Acharya, H. Fujita, J. E. Koh, J. H. Tan, K. Noronha, S. V. Bhandary, C. K. Chua, C. M. Lim, A. Laude, and L. Tong, “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med. 63, 208–218 (2015).
[Crossref] [PubMed]

V. K. Sudarshan, U. R. Acharya, E. Y. Ng, R. S. Tan, S. M. Chou, and D. N. Ghista, “Data mining framework for identification of myocardial infarction stages in ultrasound: A hybrid feature extraction paradigm (PART 2),” Comput. Biol. Med. 71, 241–251 (2016).
[Crossref] [PubMed]

S. Ergin and O. Kilinc, “A new feature extraction framework based on wavelets for breast cancer diagnosis,” Comput. Biol. Med. 51, 171–182 (2014).
[Crossref] [PubMed]

CVPR (1)

C. Schmid, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” CVPR 2006, 2169–2178 (2006).

Diabetes Care (1)

R. J. Tapp, J. E. Shaw, C. A. Harper, M. P. de Courten, B. Balkau, D. J. McCarty, H. R. Taylor, T. A. Welborn, P. Z. Zimmet, and AusDiab Study Group, “The prevalence of and factors associated with diabetic retinopathy in the Australian population,” Diabetes Care 26(6), 1731–1737 (2003).
[Crossref] [PubMed]

EuroMediterranean Biomedical Journal (1)

E. N. G. T. K. Senthil Kumar and R. Umamaheswari, “Automatic lung nodule segmentation using autoseed region growing with morphological masking (ARGMM),” EuroMediterranean Biomedical Journal 10, 99–119 (2015).

IEEE Trans. Med. Imaging (2)

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Int. J. Comput. Vis. (1)

A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,” Int. J. Comput. Vis. 42(3), 145–175 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Stem Cells (1)

D. Iejima, M. Nakayama, and T. Iwata, “HTRA1 Overexpression Induces the Exudative Form of Age-related Macular Degeneration,” J. Stem Cells 10(3), 193–203 (2015).
[PubMed]

Mach. Learn. (1)

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

Med. Image Anal. (1)

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, “Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding,” Med. Image Anal. 15(5), 748–759 (2011).
[Crossref] [PubMed]

Neural Comput. (1)

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13(3), 637–649 (2001).
[Crossref]

Ophthalmology (3)

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Opt. Express (1)

Prim. Care (1)

S. Mehta, “Age-Related Macular Degeneration,” Prim. Care 42(3), 377–391 (2015).
[Crossref] [PubMed]

Proc. Math. Phys. Eng. Sci. (1)

M. Vidyasagar, “Machine learning methods in the computational biology of cancer,” Proc. Math. Phys. Eng. Sci. 470(2167), 20140081 (2014).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

P. A. Keane, P. J. Patel, S. Liakopoulos, F. M. Heussen, S. R. Sadda, and A. Tufail, “Evaluation of age-related macular degeneration with optical coherence tomography,” Surv. Ophthalmol. 57(5), 389–414 (2012).
[Crossref] [PubMed]

Other (13)

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK Incorporated, 2004).

P. J. Kertes and T. M. Johnson, Evidence-Based Eye Care (Lippincott Williams & Wilkins, 2007).

N. Z. Hamilton, “Correlation-based feature subset selection for machine learning,” (1998).

Y. Guo, G. Zhao, and M. Pietikäinen, “Texture Classification using a Linear Configuration Model based Descriptor,” in BMVC(Citeseer, 2011), pp. 1–10.

P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting (John Wiley & Sons, 1994).

Y. Goldberg and M. Elhadad, “splitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications,” in Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers(Association for Computational Linguistics, 2008), pp. 237–240.

G. Z. Yimo Guo, Matti Pietikäinen, “Texture Classification using a Linear Configuration Model based Descriptor,” in The 22nd British Machine Vision Conference(BMVA Press, University of Dundee, 2011), pp. 119.111–119.110.

T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” in Pattern Recognition, 1994.Vol. 1- Conference A: Computer Vision & Image Processing.,Proceedings of the 12th IAPR International Conference on(1994), pp. 582–585 vol.581.

I. I. Esener, S. Ergin, and T. Yuksel, “A new ensemble of features for breast cancer diagnosis,” in International Convention on Information and Communication Technology, Electronics and Microelectronics(2015).

A. Albarrak, F. Coenen, and Y. Zheng, “Age-related Macular Degeneration Identification In Volumetric Optical Coherence Tomography Using Decomposition and Local Feature Extraction,” in The 17th Annual Conference in Medical Image Understanding and Analysis (MIUA)(2013), pp. 59–64.

T. C. Smith and E. Frank, “Introducing Machine Learning Concepts with WEKA,” in Statistical Genomics: Methods and Protocols, E. Mathé, and S. Davis, eds. (Springer New York, New York, NY, 2016), pp. 353–378.

I. Rish, J. Hellerstein, and J. Thathachar, “An analysis of data characteristics that affect naive Bayes performance,” IBM TJ Watson Research Center 30 (2001).

N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria, “Decision tree analysis on j48 algorithm for data mining,” Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering 3 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics