Abstract

A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy

Ke Wang, Tzu-Ming Liu, Juwell Wu, Nicholas G. Horton, Charles P. Lin, and Chris Xu
Biomed. Opt. Express 3(9) 1972-1977 (2012)

Multimodal imaging platform for optical virtual skin biopsy enabled by a fiber-based two-color ultrafast laser source

Hsiang-Yu Chung, Rüdiger Greinert, Franz X. Kärtner, and Guoqing Chang
Biomed. Opt. Express 10(2) 514-525 (2019)

High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy

Ming-Che Chan, Chi-Hsiang Lien, Jyan-Yo Lu, and Bo-Han Lyu
Opt. Express 22(8) 9498-9507 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [Crossref] [PubMed]
  3. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons Inc., New Jersey, 2003).
  4. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
    [Crossref] [PubMed]
  5. I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
    [Crossref]
  6. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  7. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
    [Crossref] [PubMed]
  8. M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
    [Crossref] [PubMed]
  9. S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008).
    [Crossref] [PubMed]
  10. D. Isailovic, Y. Xu, T. Copus, S. Saraswat, and S. M. Nauli, “Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope,” Appl. Spectrosc. 65(6), 575–583 (2011).
    [Crossref] [PubMed]
  11. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
    [Crossref] [PubMed]
  12. V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
    [Crossref] [PubMed]
  13. F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
    [Crossref] [PubMed]
  14. J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
    [Crossref] [PubMed]
  15. Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
    [Crossref] [PubMed]
  16. K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
    [Crossref] [PubMed]
  17. K. Hope and M. Bhatia, “Clonal interrogation of stem cells,” Nat. Methods 8(4Suppl), S36–S40 (2011).
    [Crossref] [PubMed]
  18. D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
    [Crossref] [PubMed]
  19. P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
    [Crossref] [PubMed]
  20. K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
    [Crossref] [PubMed]
  21. S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  22. M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).
  23. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
    [Crossref] [PubMed]
  24. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  26. R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
    [PubMed]
  27. K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
    [Crossref] [PubMed]
  28. S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
    [Crossref] [PubMed]
  29. https://www.thermofisher.com/tw/zt/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
  30. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [Crossref] [PubMed]

2015 (1)

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

2014 (1)

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

2012 (2)

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
[Crossref] [PubMed]

2011 (4)

D. Isailovic, Y. Xu, T. Copus, S. Saraswat, and S. M. Nauli, “Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope,” Appl. Spectrosc. 65(6), 575–583 (2011).
[Crossref] [PubMed]

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

K. Hope and M. Bhatia, “Clonal interrogation of stem cells,” Nat. Methods 8(4Suppl), S36–S40 (2011).
[Crossref] [PubMed]

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

2010 (2)

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
[Crossref] [PubMed]

2009 (3)

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

2008 (2)

S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008).
[Crossref] [PubMed]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

2007 (2)

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

2005 (2)

M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[Crossref] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

2004 (2)

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[Crossref] [PubMed]

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

2003 (1)

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

2002 (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

1999 (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1986 (1)

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Beaurepaire, E.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Belov, V. N.

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

Bennis, R. A.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Benten, D.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Bhatia, M.

K. Hope and M. Bhatia, “Clonal interrogation of stem cells,” Nat. Methods 8(4Suppl), S36–S40 (2011).
[Crossref] [PubMed]

Boas, D. A.

Bossi, M. L.

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

Boyarskiy, V. P.

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

Burrows, M.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Chan, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[Crossref] [PubMed]

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[Crossref] [PubMed]

Chang, G.

Chen, I.-H.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

Chen, L. J.

Chen, L.-J.

Cheng, P. C.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

Chia, S. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

Choi, D. K.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Chu, S.-W.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

Chung, L. W. K.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

Condeelis, J.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Copus, T.

Cornils, K.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Cotsarelis, G.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Cui, Y.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

Dandri, M.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Débarre, D.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Demirbas, U.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dickinson, M. E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

Draft, R. W.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Durst, M. E.

Entenberg, D.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Fan, Z.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Fehse, B.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Fölling, J.

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

Fraser, S. E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

Fujimoto, J. G.

Gao, X.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

Gligorijevic, B.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Guina, M.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Guo, W.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Guol, S. H.

Hakulinen, T.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Hell, S. W.

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

Ho, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

Hope, K.

K. Hope and M. Bhatia, “Clonal interrogation of stem cells,” Nat. Methods 8(4Suppl), S36–S40 (2011).
[Crossref] [PubMed]

Horton, N. G.

Humpert, F.

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

Huser, T.

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

Hwang, C.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Isailovic, D.

Ivanov, A. A.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

Jang, S.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Kaertner, F. X.

Kang, H.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Kärtner, F. X.

Kim, C. D.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Kim, H. J.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Kim, P.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Kivisto, S.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Kobat, D.

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Koulmanda, M.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Kumar, S.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Labroille, G.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Lee, J. H.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Lee, Y.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Levenson, R. M.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

Lichtman, J. W.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Lin, B.-L.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

Lin, C. P.

K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
[Crossref] [PubMed]

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Liu, H. L.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

Liu, J. Y.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

Liu, S.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Liu, T. M.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[Crossref] [PubMed]

Liu, T.-M.

Livet, J.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Loulier, K.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Lu, J.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Lu, Y.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Lummer, M.

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

Lütgehetmann, M.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Mahou, P.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Matho, K. S.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Mempel, T. R.

Mitschke, F. M.

Mollenauer, L. F.

Moore, A.

Morin, X.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Nace, A.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Nauli, S. M.

Nie, S.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

Niebuhr, B.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Nishimura, N.

Okhotnikov, O. G.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Park, H.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Park, J. K.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Pitsillides, C. M.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Pollard, J. W.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Pollok, J. M.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Roussos, E. T.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Ruvinskaya, S.

Sakadzic, S.

Sanes, J. R.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Saraswat, S.

Sauer, M.

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

Schaffer, C. B.

Sennaroglu, A.

Seo, Y. J.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Shi, G.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Simbuerger, E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

Singh, G.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Sohn, K. C.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Spencer, J. A.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Stocking, C.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Strom, T. B.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Sun, C.-K.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[Crossref] [PubMed]

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[Crossref] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

Supatto, W.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Täger, M.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Tai, S. P.

M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[Crossref] [PubMed]

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[Crossref] [PubMed]

Thomaschewski, M.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Toxavidis, V.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Tsai, T. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[Crossref] [PubMed]

Verkhusha, V. V.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Volz, T.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Wang, K.

Warlich, M.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Waters, C. W.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weber, K.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Wei, Z.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Weissman, T. A.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

White, J. G.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Wong, A. W.

Wu, J.

Wyckoff, J.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Xu, C.

Xu, X.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Xu, Y.

Yahiatène, I.

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

Yang, R.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Yoon, T. J.

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

Yun, S. H.

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

Zheltikov, A. M.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

Zheng, Y.

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Zimmerley, M.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Zimmermann, B.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Biophys. J. (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Chemistry (1)

V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chemistry 15(41), 10762–10776 (2009).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (2)

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photonics Technol. Lett. 20(9–12), 920–922 (2008).

J. Biomed. Opt. (2)

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[Crossref] [PubMed]

M. C. Chan, T. M. Liu, S. P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[Crossref] [PubMed]

J. Biophotonics (1)

F. Humpert, I. Yahiatène, M. Lummer, M. Sauer, and T. Huser, “Quantifying molecular colocalization in live cell fluorescence microscopy,” J. Biophotonics 8(1-2), 124–132 (2015).
[Crossref] [PubMed]

J. Dermatol. Sci. (1)

K. C. Sohn, G. Shi, S. Jang, D. K. Choi, Y. Lee, T. J. Yoon, H. Park, C. Hwang, H. J. Kim, Y. J. Seo, J. H. Lee, J. K. Park, and C. D. Kim, “Pitx2, a β-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro,” J. Dermatol. Sci. 54(1), 6–11 (2009).
[Crossref] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, and X. Xu, “Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells,” Nat. Commun. 5, 3071 (2014).
[PubMed]

Nat. Med. (2)

Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med. 16(6), 718–722 (2010).
[Crossref] [PubMed]

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med. 17(4), 504–509 (2011).
[Crossref] [PubMed]

Nat. Methods (2)

K. Hope and M. Bhatia, “Clonal interrogation of stem cells,” Nat. Methods 8(4Suppl), S36–S40 (2011).
[Crossref] [PubMed]

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[Crossref] [PubMed]

Nat. Protoc. (1)

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc. 6(10), 1500–1520 (2011).
[Crossref] [PubMed]

Nature (1)

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450(7166), 56–62 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).

P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons Inc., New Jersey, 2003).

https://www.thermofisher.com/tw/zt/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics and the working principle (shown in the inset) of the simple approach to multi-color two-photon fluorescence microscope. The three-color fiber-delivered femtosecond source was composed of a compact 1030 nm femtosecond laser as pump and a nonlinear fiber as a simultaneous wavelength up-and-down convertor. The fiber-output of the multi-color femtosecond source was then connected to the corresponding home-made nonlinear microscope to pump the blue, green, and red fluorescent indicators in the same specimen. For characterizing and avoiding the crosstalk between the R, G, and B channels, a source filter and a fluorescence filter were inserted after the source and before PMT separately. Pump: Compact 1.03-μm Ytterbium-doped femtosecond laser; ISO: optical isolator; PCF: photonic crystal fiber; OBJ: microscope objective; PMT; photomultiplier tube.
Fig. 2
Fig. 2 The 3-D power-dependent output spectrum measurements at the end of the (a) 100 cm, (b) 14 cm, (c) 7.5 cm, and (d) 5 cm nonlinear fiber-optic wavelength convertor (FOWC). The values inserted in the figure represent the total average pump power after the nonlinear fiber.
Fig. 3
Fig. 3 The excitation spectra for pumping blue (a), green (b), and red (c) fluorescence indicators. The corresponding second harmonic background-free auto-correlation traces for them are shown in (d), (e), and (f), respectively
Fig. 4
Fig. 4 Matrix two-photon fluorescence images of (a) DAPI fluorescent indicators, (b) Alexa-Fluor 488 fluorescent indicators, and (c) Alexa-Fluor 594 fluorescent indicators excited separately at blue-shifted 0.6~0.8 μm components (first columns), residual 1.030 μm (second columns), and 1.2~1.4 μm red-shifted components (third columns). Six bandpass filters of 447, 510, 520, 540, 562, and 641 nm (in each row) central wavelength were sequentially placed before the PMT. The matrix images were acquired for checking the crosstalks between the R, G, and B channel. The sizes of all the images were 310 μm by 310 μm.
Fig. 5
Fig. 5 The emission spectra (solid lines) and two-photon pumping spectra (dashed lines) of DAPI (Blue), Alexa-Fluor 488 (AF 488, Green), and Alexa-Fluor 594(AF 594, Red). The inset shows the spectrum coverage of emission filters before PMT and source filters after nonlinear fiber for two-photon pumping.
Fig. 6
Fig. 6 Multi-color TPFM images of tissues at two different locations ((a)~(d) and (e)~(h)) in the mouse skin hair follicles performed by the simple microscope. Signals from DAPI (blue, Fig. 6(a) or 6(e)), Alexa Fluor 488 (green, Fig. 6(b) or 6(h)), and Alexa Fluor 594 (red, Fig. 6 (c) or 6(g)) channels were combined into rainbow images shown in Fig. 6(d) and 6(h). Image size: 310 μm by 310 μm.
Fig. 7
Fig. 7 Methods to (a) enable simultaneous imaging more fluorescence indicators by adding external parallel detection units; (b) generate more-wavelength femtosecond pulses by adding parallel nonlinear fibers. DBS: dichroic beam splitters; BS: beam splitters; M: Mirrors; NLF: nonlinear fiber and F: Filters.

Metrics