Abstract

Fourier ptychographic (FP) microscopy is a coherent imaging method that can synthesize an image with a higher bandwidth using multiple low-bandwidth images captured at different spatial frequency regions. The method’s demand for multiple images drives the need for a brighter illumination scheme and a high-frame-rate camera for a faster acquisition. We report the use of a guided laser beam as an illumination source for an FP microscope. It uses a mirror array and a 2-dimensional scanning Galvo mirror system to provide a sample with plane-wave illuminations at diverse incidence angles. The use of a laser presents speckles in the image capturing process due to reflections between glass surfaces in the system. They appear as slowly varying background fluctuations in the final reconstructed image. We are able to mitigate these artifacts by including a phase image obtained by differential phase contrast (DPC) deconvolution in the FP algorithm. We use a 1-Watt laser configured to provide a collimated beam with 150 mW of power and beam diameter of 1 cm to allow for the total capturing time of 0.96 seconds for 96 raw FPM input images in our system, with the camera sensor’s frame rate being the bottleneck for speed. We demonstrate a factor of 4 resolution improvement using a 0.1 NA objective lens over the full camera field-of-view of 2.7 mm by 1.5 mm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational illumination for high-speed in vitro Fourier ptychographic microscopy

Lei Tian, Ziji Liu, Li-Hao Yeh, Michael Chen, Jingshan Zhong, and Laura Waller
Optica 2(10) 904-911 (2015)

Digital micromirror device-based laser-illumination Fourier ptychographic microscopy

Cuifang Kuang, Ye Ma, Renjie Zhou, Justin Lee, George Barbastathis, Ramachandra R. Dasari, Zahid Yaqoob, and Peter T. C. So
Opt. Express 23(21) 26999-27010 (2015)

Embedded pupil function recovery for Fourier ptychographic microscopy

Xiaoze Ou, Guoan Zheng, and Changhuei Yang
Opt. Express 22(5) 4960-4972 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref]
  2. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
    [Crossref] [PubMed]
  3. R. Hegerl and W. Hoppe, “Dynamic theory of crystal structure analysis by electron diffraction in the inhomogeneous primary radiation wave field,” Ber. Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970).
    [Crossref]
  4. X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
    [Crossref] [PubMed]
  5. J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PloS ONE 10(7), e0133489 (2015).
    [Crossref] [PubMed]
  6. S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
    [Crossref] [PubMed]
  7. K. Guo, Z. Bian, S. Dong, P. Nanda, Y. M. Wang, and G. Zheng, “Microscopy illumination engineering using a low-cost liquid crystal display,” Biomed. Opt. Express 6(2), 574–579 (2015).
    [Crossref] [PubMed]
  8. Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
    [Crossref] [PubMed]
  9. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
    [Crossref]
  10. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
    [Crossref] [PubMed]
  11. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
    [Crossref] [PubMed]
  12. A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
    [Crossref] [PubMed]
  13. J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
    [Crossref] [PubMed]
  14. S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
    [Crossref] [PubMed]
  15. L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
    [Crossref] [PubMed]
  16. R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
    [Crossref] [PubMed]
  17. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
    [Crossref]
  18. S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
    [Crossref] [PubMed]
  19. X. Ou, J. Chung, R. Horstmeyer, and C. Yang, “Aperture scanning Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3140–3150 (2016).
    [Crossref] [PubMed]
  20. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
    [Crossref] [PubMed]
  21. R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
    [Crossref] [PubMed]
  22. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
    [Crossref]
  23. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  24. K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
    [Crossref] [PubMed]
  25. L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
    [Crossref]
  26. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
    [Crossref] [PubMed]
  27. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectrum multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
    [Crossref] [PubMed]
  28. S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
    [Crossref] [PubMed]
  29. C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23(21), 26999–27010 (2015).
    [Crossref] [PubMed]
  30. F. Nguyen, B. Terao, and J. Laski, “Realizing LED Illumination Lighting Applications,” Proc. SPIE 5941, 594105 (2005).
    [Crossref]
  31. P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9–14 (2016).
    [Crossref]
  32. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
    [Crossref]
  33. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
    [Crossref] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999)
    [Crossref]
  35. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2(2), 121–127 (1985).
    [Crossref]
  36. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
    [Crossref] [PubMed]
  37. R. Heintzmann, “Estimating missing information by maximum likelihood deconvolution,” Micron 38, 136–144 (2007).
    [Crossref]

2016 (5)

2015 (12)

L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
[Crossref]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref] [PubMed]

S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
[Crossref] [PubMed]

C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23(21), 26999–27010 (2015).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PloS ONE 10(7), e0133489 (2015).
[Crossref] [PubMed]

K. Guo, Z. Bian, S. Dong, P. Nanda, Y. M. Wang, and G. Zheng, “Microscopy illumination engineering using a low-cost liquid crystal display,” Biomed. Opt. Express 6(2), 574–579 (2015).
[Crossref] [PubMed]

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
[Crossref]

2014 (10)

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
[Crossref] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref] [PubMed]

S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
[Crossref] [PubMed]

S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectrum multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref] [PubMed]

2013 (3)

2009 (2)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

2007 (1)

R. Heintzmann, “Estimating missing information by maximum likelihood deconvolution,” Micron 38, 136–144 (2007).
[Crossref]

2005 (1)

F. Nguyen, B. Terao, and J. Laski, “Realizing LED Illumination Lighting Applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

1985 (1)

1970 (1)

R. Hegerl and W. Hoppe, “Dynamic theory of crystal structure analysis by electron diffraction in the inhomogeneous primary radiation wave field,” Ber. Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970).
[Crossref]

Ames, B.

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

Ao, Z.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Barbastathis, G.

Bian, L.

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

Bian, Z.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999)
[Crossref]

Bunk, O.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

Chen, F.

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

Chen, M.

Chen, R. Y.

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

Chung, J.

Cohen, O.

Cote, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

D’Ambrosio, M. V.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Dai, Q.

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

Dasari, R. R.

Datar, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Dierolf, M.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

Dong, S.

K. Guo, Z. Bian, S. Dong, P. Nanda, Y. M. Wang, and G. Zheng, “Microscopy illumination engineering using a low-cost liquid crystal display,” Biomed. Opt. Express 6(2), 574–579 (2015).
[Crossref] [PubMed]

S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
[Crossref] [PubMed]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref] [PubMed]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref] [PubMed]

S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectrum multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref] [PubMed]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
[Crossref] [PubMed]

S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
[Crossref] [PubMed]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
[Crossref]

Fletcher, D. A.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Gande, A. V.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Guo, K.

Hegerl, R.

R. Hegerl and W. Hoppe, “Dynamic theory of crystal structure analysis by electron diffraction in the inhomogeneous primary radiation wave field,” Ber. Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970).
[Crossref]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

R. Heintzmann, “Estimating missing information by maximum likelihood deconvolution,” Micron 38, 136–144 (2007).
[Crossref]

Hoppe, W.

R. Hegerl and W. Hoppe, “Dynamic theory of crystal structure analysis by electron diffraction in the inhomogeneous primary radiation wave field,” Ber. Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970).
[Crossref]

Horstmeyer, R.

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

X. Ou, J. Chung, R. Horstmeyer, and C. Yang, “Aperture scanning Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3140–3150 (2016).
[Crossref] [PubMed]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
[Crossref]

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Jiang, S.

Kim, J.

Kuang, C.

Kulkarni, R. P.

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PloS ONE 10(7), e0133489 (2015).
[Crossref] [PubMed]

Laski, J.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED Illumination Lighting Applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Lee, J.

Li, X.

Liu, Z.

Ma, Y.

Maiden, A. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

Menzel, A.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

Nanda, P.

Nguyen, F.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED Illumination Lighting Applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Ou, X.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
[Crossref]

X. Ou, J. Chung, R. Horstmeyer, and C. Yang, “Aperture scanning Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3140–3150 (2016).
[Crossref] [PubMed]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PloS ONE 10(7), e0133489 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

Patel, H. S.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Pfeiffer, F.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

Phillips, Z. F.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Ramchandran, K.

Rawal, S.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Rodenburg, J. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

Rulison, J. J.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Sandras, N.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Shiradkar, R.

Sidorenko, P.

Situ, G.

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

So, P. T. C.

Streibl, N.

Suo, J.

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

Switz, N. A.

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

Terao, B.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED Illumination Lighting Applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Thibault, P.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

Tian, L.

Tropp, J. A.

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

Waller, L.

Wang, Y. M.

Williams, A.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999)
[Crossref]

Xin, H.

Yang, C.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
[Crossref]

X. Ou, J. Chung, R. Horstmeyer, and C. Yang, “Aperture scanning Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3140–3150 (2016).
[Crossref] [PubMed]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PloS ONE 10(7), e0133489 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

Yaqoob, Z.

Yeh, L.-H.

Zheng, G.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
[Crossref]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref] [PubMed]

S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

K. Guo, Z. Bian, S. Dong, P. Nanda, Y. M. Wang, and G. Zheng, “Microscopy illumination engineering using a low-cost liquid crystal display,” Biomed. Opt. Express 6(2), 574–579 (2015).
[Crossref] [PubMed]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
[Crossref] [PubMed]

S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectrum multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref] [PubMed]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref] [PubMed]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Zhong, J.

Zhou, R.

Ber. Bunsenges. Phys. Chem. (1)

R. Hegerl and W. Hoppe, “Dynamic theory of crystal structure analysis by electron diffraction in the inhomogeneous primary radiation wave field,” Ber. Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970).
[Crossref]

Biomed. Opt. Express (6)

J. Biomed. Opt. (1)

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Micron (1)

R. Heintzmann, “Estimating missing information by maximum likelihood deconvolution,” Micron 38, 136–144 (2007).
[Crossref]

Nat. Photonics (2)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

New J. Phys. (1)

R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex relaxation,” New J. Phys. 17(5), 053044 (2015).
[Crossref] [PubMed]

Opt. Express (12)

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
[Crossref]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref] [PubMed]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref] [PubMed]

S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
[Crossref] [PubMed]

C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23(21), 26999–27010 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23(4), 4856–4866 (2015).
[Crossref] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Letter (1)

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Letter 39(23), 6648–6651 (2014).
[Crossref]

Optica (4)

PloS ONE (2)

Z. F. Phillips, M. V. D’Ambrosio, L. Tian, J. J. Rulison, H. S. Patel, N. Sandras, A. V. Gande, N. A. Switz, D. A. Fletcher, and L. Waller, “Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array,” PloS ONE 10(5), e0124938 (2015).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PloS ONE 10(7), e0133489 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Nguyen, B. Terao, and J. Laski, “Realizing LED Illumination Lighting Applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Ultramicroscopy (2)

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Modified FP algorithm to include DPC-generated phase into the iteration. The reconstruction begins with the raw image captured with the illumination from the center mirror element as an initial guess of the sample field. The iteration process starts by forming the sample’s quantitative phase image via DPC deconvolution with the resolution defined by the DPC transfer function. The phase of the sample field with the corresponding resolution is updated. Images captured under varying illuminations are used to update the pupil function and the sample’s Fourier spectrum up to NAsys resolution, just as in the original FP algorithm. The updated pupil function is used to generate an updated DPC-deconvolved phase image for the update process, and the iteration process repeats until convergence. In the end, we reconstruct the complex field of the sample and the pupil function.

Fig. 2
Fig. 2

Experimental setup. It consists of a 4f system with the 2D Galvo mirror system and the mirror array guiding the laser illumination direction. The beam diameter is about 1 cm, covering the entire FOV captured by the camera (2.7 mm by 1.5 mm after magnification). The objective lens has an NA of 0.1 and the total illumination NA is 0.325, resulting in NAsys = 0.425.

Fig. 3
Fig. 3

The Fourier spectrum region covered by the angularly varying illumination and the layout of the mirror array to achieve the desired coverage. With the objective NA of 0.1 and one normal plane wave illumination, the spatial frequency acquired by the system is delineated by the black circle in the Fourier domain. With varying illumination angles, we can expand the extent of the captured spatial frequency, as indicated by the red circle with the NA of 0.425. The mirror array is 30 cm wide and is placed 40 cm away from the sample plane. Each circular bandpass in the Fourier domain, with its size defined by NAobj and its location by the illumination angle provided by each mirror element, has 60% overlap with the contiguous one.

Fig. 4
Fig. 4

Resolution measurement for amplitude and phase imaging of our laser FPM setup. Both amplitude and phase Siemens star targets are imaged at 3 different locations in the system’s total FOV of 2.7 mm by 1.5 mm for a thorough quantification of the system’s resolution. Normal illumination raw images show the captured image of the corresponding Siemens star target under the illumination by the center mirror element before FP reconstruction. The red circular trace in each reconstructed target corresponds to the smallest circumference at which the spokes pattern are barely observable as shown in the angle (degree) vs. magnitude plot next to each image. The observed resolution of 1.2 μm for 1.29 mm and 1.31 mm away from the center and 1.1 μm for others match closely with the theoretical resolution of λ NA sys = 1.08 μ m periodicity.

Fig. 5
Fig. 5

Images of 4.5-μm-diameter microspheres sample. (a) Within the bright-field illumination angular region (NAillum < NAobj) which corresponds to the center 7 mirror elements in Fig. 3, the captured images show fluctuating backgrounds due to coherence artifacts from imperfections in the optical path. (b) Without an additional DPC-deconvolved phase update, the reconstructed phase image shows an uneven background. After the modification, the reconstructed phase is free from the background noise and the resulting phase is also quantitative.

Fig. 6
Fig. 6

Blood smear images, before and after modification in FP algorithm. Without the additional DPC-deconvolved phase update in the reconstruction process, the resulting phase of the sample shows an uneven background signal that also influences the cells’ phase amplitude. After the modification, the background is uniform and the red blood cells show similar phase values. Note, the modification has little or no affect on the amplitude image.

Fig. 7
Fig. 7

Wide FOV histology image. (a)–(c) show FP reconstructed amplitudes of the sub-regions in the full FOV image in (d). Simultaneous to the sample field reconstruction, FP algorithm also characterizes the pupil function’s amplitude and phase of each sub-region to reconstruct aberration-free high-resolution images.

Fig. 8
Fig. 8

(a–c) DPC transfer functions for 3 pairs of asymmetrical illumination patterns. (d) The spatial frequency extent covered by the DPC-deconvolved phase image. The big circle in the images indicate the 2NA spatial frequency boundary, and the small red circle in (d) indicates NA boundary.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ψ oblique ( x ) = ψ sample ( x ) exp ( j k 0 x sin θ )
Ψ oblique ( k ) = ψ sample ( x ) exp ( j k 0 x sin θ ) exp ( j k x ) dx = Ψ sample ( k k 0 sin θ )
I oblique ( x ) = | 1 { Ψ oblique ( k ) P ( k ) } | 2
ψ i ( x ) = 1 { P ( k ) { ψ sample ( x ) exp ( j k 0 x sin θ i ) } }
I top = i top | ψ i ( x ) | 2
ψ DPC ( x ) = | { Ψ ( k ) P DPC ( k ) } | exp ( j θ DPC )
I ˜ i ( k ) = B i δ ( k ) + H abs , i ( k ) μ ˜ ( k ) + H ph , i ( k ) ϕ ˜ ( k ) ,
B i = k pattern i S ( k ) | P ( k ) | 2 ,
H abs , i ( k ) = k pattern i [ S ( k ) P * ( k ) P ( k + k ) + S ( k ) P * ( k ) P ( k k ) ] ,
H ph , i ( k ) = j k pattern i [ S ( k ) P * ( k ) P ( k + k ) S ( k ) P * ( k ) P ( k k ) ] ,
I DPC , 1 ( r ) = I top ( r ) I bot ( r ) I top ( r ) + I bot ( r )
I ˜ DPC , 1 ( k ) = H ph , top ( k ) H ph , bot ( k ) B top + B bot ϕ ˜ ( k ) = H DPC , 1 ( k ) ϕ ˜ ( k ) ,
ϕ tik ( r ) = 1 { n H DPC , n ( k ) I ˜ DPC , n ( k ) n | H DPC , n ( k ) | 2 + α } ,

Metrics