Abstract

Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties

Yi Qiu, Yahui Wang, Yiqing Xu, Namas Chandra, James Haorah, Basil Hubbi, Bryan J. Pfister, and Xuan Liu
Biomed. Opt. Express 7(2) 688-700 (2016)

In vivo volumetric quantitative micro-elastography of human skin

Shaghayegh Es’haghian, Kelsey M. Kennedy, Peijun Gong, Qingyun Li, Lixin Chin, Philip Wijesinghe, David D. Sampson, Robert A. McLaughlin, and Brendan F. Kennedy
Biomed. Opt. Express 8(5) 2458-2471 (2017)

Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

Shang Wang, Andrew L. Lopez, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin
Biomed. Opt. Express 5(7) 1980-1992 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
    [Crossref]
  3. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [Crossref] [PubMed]
  4. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [Crossref]
  5. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
    [Crossref]
  6. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
    [Crossref] [PubMed]
  7. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
  8. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [Crossref] [PubMed]
  9. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37(12), 2310–2312 (2012).
    [Crossref] [PubMed]
  10. T. M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett. 39(4), 838–841 (2014).
    [Crossref] [PubMed]
  11. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
    [Crossref] [PubMed]
  12. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
    [Crossref] [PubMed]
  13. A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
    [Crossref] [PubMed]
  14. K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
    [PubMed]
  15. K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
    [Crossref] [PubMed]
  16. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
    [Crossref] [PubMed]
  17. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
    [Crossref] [PubMed]
  18. R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
    [Crossref] [PubMed]
  19. Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
    [Crossref] [PubMed]
  20. J. Y. Qiu, F. Zaki, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. Pfister, and X. Liu, “Depth resolved optical coherence elastography based on fiber-optic probe with integrated Fabry-Perot force sensor,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper AW1O.3.
    [Crossref]
  21. X. Liu, M. Kirby, and F. Zhao, “Motion analysis and removal in intensity variation based OCT angiography,” Biomed. Opt. Express 5(11), 3833–3847 (2014).
    [Crossref] [PubMed]
  22. R. W. Ogden, Non-Linear Elastic Deformations (Courier Corporation, 1997).
  23. A. F. Bower, Applied Mechanics of Solids (CRC press, 2009).
  24. A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
    [Crossref] [PubMed]
  25. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
    [Crossref] [PubMed]
  26. S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
    [Crossref] [PubMed]
  27. V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
    [Crossref] [PubMed]
  28. J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
    [Crossref] [PubMed]
  29. A. Karimi and M. Navidbakhsh, “An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions,” J. Mater. Sci. Mater. Med. 25(7), 1623–1630 (2014).
    [Crossref] [PubMed]
  30. C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
    [Crossref] [PubMed]
  31. S. A. Chester, C. V. Di Leo, and L. Anand, “A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels,” Int. J. Solids Struct. 52, 1–18 (2015).
    [Crossref]
  32. L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
    [Crossref]
  33. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
    [Crossref] [PubMed]
  34. M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
    [Crossref] [PubMed]
  35. A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
    [Crossref] [PubMed]
  36. D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin—finite deformations,” J. Biomechanics 3, 122124 (1970).

2016 (3)

Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
[Crossref] [PubMed]

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

2015 (2)

S. A. Chester, C. V. Di Leo, and L. Anand, “A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels,” Int. J. Solids Struct. 52, 1–18 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
[Crossref] [PubMed]

2012 (3)

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
[Crossref] [PubMed]

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37(12), 2310–2312 (2012).
[Crossref] [PubMed]

2011 (4)

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
[Crossref] [PubMed]

2010 (3)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

2009 (1)

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

2008 (3)

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
[Crossref] [PubMed]

2007 (2)

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[Crossref] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

2006 (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

2003 (2)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[Crossref] [PubMed]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1998 (2)

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[Crossref] [PubMed]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

1997 (1)

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

1970 (1)

D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin—finite deformations,” J. Biomechanics 3, 122124 (1970).

Adie, S. G.

Aktas, E.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Alai, A.

S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
[Crossref] [PubMed]

Anand, L.

S. A. Chester, C. V. Di Leo, and L. Anand, “A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels,” Int. J. Solids Struct. 52, 1–18 (2015).
[Crossref]

Arda, K.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Aribas, B. K.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Arnal, B.

Barbone, P. E.

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Barton, J. K.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Bergheau, J.-M.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

Bishop, J.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[Crossref] [PubMed]

Boppart, S. A.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
[Crossref] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Bouma, B. E.

R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Castaneda, B.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Chandra, N.

Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
[Crossref] [PubMed]

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
[Crossref] [PubMed]

Chester, S. A.

S. A. Chester, C. V. Di Leo, and L. Anand, “A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels,” Int. J. Solids Struct. 52, 1–18 (2015).
[Crossref]

Chin, L.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Ciledag, N.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Crecea, V.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Dantuono, J. T.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Delalleau, A.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

Di Leo, C. V.

S. A. Chester, C. V. Di Leo, and L. Anand, “A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels,” Int. J. Solids Struct. 52, 1–18 (2015).
[Crossref]

di Sant’agnese, P. A.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Dong, L.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Doyley, M. M.

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
[Crossref] [PubMed]

Elkin, B. S.

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Finan, J. D.

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Ganpule, S.

S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
[Crossref] [PubMed]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Gerstmann, D. K.

Goenezen, S.

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Gokhale, N. H.

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Hall, T. J.

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Haorah, J.

Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
[Crossref] [PubMed]

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

Heller, A.

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Hoyt, K.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Huang, Z.

Hubbi, B.

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Jiang, J.

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

John, R.

Joseph, J. V.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Josse, G.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

Kalbian, I. L.

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Karimi, A.

A. Karimi and M. Navidbakhsh, “An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions,” J. Mater. Sci. Mater. Med. 25(7), 1623–1630 (2014).
[Crossref] [PubMed]

Karimi, R.

R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
[Crossref] [PubMed]

Kennedy, B. F.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37(12), 2310–2312 (2012).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37(12), 2310–2312 (2012).
[Crossref] [PubMed]

Kirby, M.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Köse, K.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Lagarde, J.-M.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

Last, J. A.

C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
[Crossref] [PubMed]

Latham, B.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Liang, X.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
[Crossref] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Liu, X.

Luginbuhl, C.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[Crossref] [PubMed]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

McKee, C. T.

C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
[Crossref] [PubMed]

McLaughlin, R. A.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37(12), 2310–2312 (2012).
[Crossref] [PubMed]

Mishra, V.

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

Mofrad, M. R. K.

R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
[Crossref] [PubMed]

Morrison, B.

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

Munro, P. R. T.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Murphy, C. J.

C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
[Crossref] [PubMed]

Navidbakhsh, M.

A. Karimi and M. Navidbakhsh, “An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions,” J. Mater. Sci. Mater. Med. 25(7), 1623–1630 (2014).
[Crossref] [PubMed]

Nguyen, T. M.

Nigwekar, P.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

O’Donnell, M.

Oberai, A. A.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Parker, K. J.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Pearson, E. M.

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

Pfister, B. J.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Plewes, D.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[Crossref] [PubMed]

Plewes, D. B.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[Crossref] [PubMed]

Plougonven, E.

S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
[Crossref] [PubMed]

Qiu, Y.

Quirk, B. C.

Rubens, D. J.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Russell, P.

C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
[Crossref] [PubMed]

Samani, A.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[Crossref] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[Crossref] [PubMed]

Sampson, D. D.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37(12), 2310–2312 (2012).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

Saunders, C. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Schmitt, J.

Schuetz, H.

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Skotak, M.

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

Sommer, A. M.

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Song, S.

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).

Strang, J.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Sun, C.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).

Veronda, D. R.

D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin—finite deformations,” J. Biomechanics 3, 122124 (1970).

Wang, R. K.

T. M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett. 39(4), 838–841 (2014).
[Crossref] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Wang, Y.

Welch, A. J.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Westmann, R. A.

D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin—finite deformations,” J. Biomechanics 3, 122124 (1970).

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Wijesinghe, P.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Xu, Y.

Yang, V. X. D.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).

Zahouani, H.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

Zhang, M.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Zhao, F.

Zhu, T.

R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
[Crossref] [PubMed]

Zubovits, J.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. D. Finan, B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison, “Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age,” Ann. Biomed. Eng. 40(1), 70–78 (2012).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Biomech. Model. Mechanobiol. (1)

S. Ganpule, A. Alai, E. Plougonven, and N. Chandra, “Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches,” Biomech. Model. Mechanobiol. 12(3), 511–531 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Cancer Biomark. (1)

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Cardiovasc. Eng. (1)

R. Karimi, T. Zhu, B. E. Bouma, and M. R. K. Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8(4), 191–202 (2008).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

Int. J. Solids Struct. (1)

S. A. Chester, C. V. Di Leo, and L. Anand, “A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels,” Int. J. Solids Struct. 52, 1–18 (2015).
[Crossref]

J. Biomechanics (1)

D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin—finite deformations,” J. Biomechanics 3, 122124 (1970).

J. Biomed. Opt. (1)

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).

J. Innov. Opt. Health Sci. (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Med. (1)

A. Karimi and M. Navidbakhsh, “An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions,” J. Mater. Sci. Mater. Med. 25(7), 1623–1630 (2014).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photonics News (1)

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photonics News 8(5), 41 (1997).
[Crossref]

Phys. Med. Biol. (4)

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[Crossref] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[Crossref] [PubMed]

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
[Crossref] [PubMed]

A. A. Oberai, N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang, “Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility,” Phys. Med. Biol. 54(5), 1191–1207 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

V. Mishra, M. Skotak, H. Schuetz, A. Heller, J. Haorah, and N. Chandra, “Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model,” Sci. Rep. 6, 26992 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[Crossref] [PubMed]

Skin Res. Technol. (1)

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14(2), 152–164 (2008).
[Crossref] [PubMed]

Tissue Eng. Part B Rev. (1)

C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, “Indentation versus tensile measurements of Young’s modulus for soft biological tissues,” Tissue Eng. Part B Rev. 17(3), 155–164 (2011).
[Crossref] [PubMed]

Ultrason. Imaging (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Other (3)

R. W. Ogden, Non-Linear Elastic Deformations (Courier Corporation, 1997).

A. F. Bower, Applied Mechanics of Solids (CRC press, 2009).

J. Y. Qiu, F. Zaki, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. Pfister, and X. Liu, “Depth resolved optical coherence elastography based on fiber-optic probe with integrated Fabry-Perot force sensor,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper AW1O.3.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (6272 KB)      Stress-strain relationship during qOCE characterization

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Illustration of qOCE system (FC: fiber optic coupler; SLD: superluminescent diode; (E)fp1, optical reflection from the tip of single mode fiber; (E)fp2, optical reflection from the proximal end of the first GRIN lens; (E)s, sample light; (E)r, reference light; (b) multiplexed signal for simultaneous probe and tissue deformation tracking; (c) software interface for real-time stress-strain characterization (Visualization 1).

Fig. 2
Fig. 2

(a) Linear stress-strain relationship at small strain; (b) nonlinear stress-strain relationship and curve fitting based on Neo-Hookean model.

Fig. 3
Fig. 3

Human skin at volar forearm: cross-sectional image (a) and (b) en face image; human skin at dorsal forearm: cross-sectional image (c) and (d) en face image; (e) stress-strain curve for volar (black) and dorsal (red) skin. In Fig. 3(a) and 3(c), E indicates epidermis and D indicates dermis.

Fig. 4
Fig. 4

(a) qOCE probe and brain slice; (b) en face OCT image of hippocampus obtained from the coronal plane (DG: dentate gyrus; CA1: Cornu Ammonis 1); (c) en face OCT image of cortex obtained from the coronal plane; (d) stress-strain curve for cortex grey matter (black) and hippocampus (red) of rat brain. Solid curves are experimental data and dashed curves are linear fitting of the stress-strain curve.

Metrics