Abstract

Human tissue is one of the most complex optical media since it is turbid and nonhomogeneous. We suggest a new optical method for sensing physiological tissue state, based on the collection of the ejected light at all exit angles, to receive the full scattering profile. We built a unique set-up for noninvasive encircled measurement. We use a laser, a photodetector and finger tissues-mimicking phantoms presenting different optical properties. Our method reveals an isobaric point, which is independent of the optical properties. We compared the new finger tissues-like phantoms to others samples and found the linear dependence between the isobaric point's angle and the exact tissue geometry. These findings can be useful for biomedical applications such as non-invasive and simple diagnostic of the fingertip joint, ear lobe and pinched tissues.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental system for measuring the full scattering profile of circular phantoms

Idit Feder, Hamootal Duadi, and Dror Fixler
Biomed. Opt. Express 6(8) 2877-2886 (2015)

Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering

Maciej S. Wróbel, Alexey P. Popov, Alexander V. Bykov, Valery V. Tuchin, and Małgorzata Jędrzejewska-Szczerska
Biomed. Opt. Express 7(6) 2088-2094 (2016)

A liquid optical phantom with tissue-like heterogeneities for confocal microscopy

Danni Wang, Ye Chen, and Jonathan T. C. Liu
Biomed. Opt. Express 3(12) 3153-3160 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Tuchin, “Light scattering study of tissues,” Phys. Uspekhi 40(5), 495–515 (1997).
    [Crossref]
  2. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
    [Crossref] [PubMed]
  3. P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49(18), 3538–3544 (2010).
    [Crossref] [PubMed]
  4. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [Crossref] [PubMed]
  5. J. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
    [Crossref]
  6. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484–490 (2000).
    [Crossref] [PubMed]
  7. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
    [Crossref] [PubMed]
  8. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [Crossref] [PubMed]
  9. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J. P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H. C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  10. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  11. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  12. H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
    [Crossref] [PubMed]
  13. I. Feder, H. Duadi, and D. Fixler, “Experimental system for measuring the full scattering profile of circular phantoms,” Biomed. Opt. Express 6(8), 2877–2886 (2015).
    [Crossref] [PubMed]
  14. I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).
  15. M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7(6), 2088–2094 (2016).
    [Crossref] [PubMed]
  16. M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
    [Crossref]
  17. M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
    [Crossref] [PubMed]
  18. R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
    [Crossref]
  19. Ankri, R., H. Duadi, and D. Fixler. “A new diagnostic tool based on diffusion reflection measurements of gold nanoparticles,” SPIE BiOS. (2012).
  20. R. Ankri, “Non Invasive Optical Technique for the Investigation of Tissue Structure and Physiology,” Ph.D. Thesis, 4–11 (2012).
  21. M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
    [Crossref] [PubMed]
  22. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [Crossref] [PubMed]
  23. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
    [Crossref] [PubMed]
  24. H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
    [Crossref] [PubMed]
  25. H. Duadi, M. Nitzan, and D. Fixler, “Simulation of oxygen saturation measurement in a single blood vein,” Opt. Lett. 41(18), 4312–4315 (2016).
    [Crossref] [PubMed]
  26. M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
    [Crossref] [PubMed]
  27. M. Jędrzejewska-Szczerska, M. S. Wróbel, S. Galla, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Investigation of photothermolysis therapy of human skin diseases using optical phantoms,” SPIE Proc. 9447, 944715 (2015).
  28. S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
    [Crossref] [PubMed]
  29. D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
    [Crossref] [PubMed]

2016 (2)

2015 (5)

I. Feder, H. Duadi, and D. Fixler, “Experimental system for measuring the full scattering profile of circular phantoms,” Biomed. Opt. Express 6(8), 2877–2886 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

2011 (1)

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

2010 (1)

2008 (1)

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

2007 (2)

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref] [PubMed]

2006 (1)

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

2004 (1)

2000 (1)

1997 (2)

1993 (2)

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

A’Amar, O.

Andersen, C.

Andersen, P.

Andersen, P. E.

Andersson-Engels, S.

Ankri, R.

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

Baribeau, F.

Beek, J. F.

Bénazech-Lavoué, M.

Bérubé-Lauzière, Y.

Bigio, I. J.

Bodnar, O.

Bonner, R. F.

Botwicz, M.

Bouchard, J. P.

Bykov, A. V.

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7(6), 2088–2094 (2016).
[Crossref] [PubMed]

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

Cenian, A.

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

Cubeddu, R.

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

Deutsch, M.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

Di Ninni, P.

Dreifuss, T.

I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).

Duadi, H.

H. Duadi, M. Nitzan, and D. Fixler, “Simulation of oxygen saturation measurement in a single blood vein,” Opt. Lett. 41(18), 4312–4315 (2016).
[Crossref] [PubMed]

I. Feder, H. Duadi, and D. Fixler, “Experimental system for measuring the full scattering profile of circular phantoms,” Biomed. Opt. Express 6(8), 2877–2886 (2015).
[Crossref] [PubMed]

I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

Durduran, T.

Elster, C.

Farina, A.

Feder, I.

I. Feder, H. Duadi, and D. Fixler, “Experimental system for measuring the full scattering profile of circular phantoms,” Biomed. Opt. Express 6(8), 2877–2886 (2015).
[Crossref] [PubMed]

I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Fixler, D.

H. Duadi, M. Nitzan, and D. Fixler, “Simulation of oxygen saturation measurement in a single blood vein,” Opt. Lett. 41(18), 4312–4315 (2016).
[Crossref] [PubMed]

I. Feder, H. Duadi, and D. Fixler, “Experimental system for measuring the full scattering profile of circular phantoms,” Biomed. Opt. Express 6(8), 2877–2886 (2015).
[Crossref] [PubMed]

I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

Foschum, F.

Friebel, M.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Frosz, M.

Galla, S.

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

Gallant, P.

Gao, W.

Garcia, J.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

Greisen, G.

Hansen, P.

Ho, H. C.

Hyttel-Sorensen, S.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

Jedrzejewska-Szczerska, M.

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7(6), 2088–2094 (2016).
[Crossref] [PubMed]

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

Kacprzak, M.

Khoptyar, D.

Kienle, A.

Kinnunen, M.

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

Klauenberg, K.

Kleiser, S.

Knüttel, A.

Leclair, S.

Lee, P.

Lesage, F.

Levitz, D.

Liebert, A.

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Martelli, F.

Mazurenka, M.

Meinke, M.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Mermut, O.

Milej, D.

Müller, G.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Nitzan, M.

Noiseux, I.

Pickering, J. W.

Piechowski, L.

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

Pifferi, A.

Pogue, B. W.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

Popov, A. P.

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7(6), 2088–2094 (2016).
[Crossref] [PubMed]

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

Popovtzer, R.

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

Prahl, S. A.

Reif, R.

Roggan, A.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Sawczak, M.

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

Sawosz, P.

Schmitt, J.

Schmitt, J. M.

Spinelli, L.

Sterenborg, H. J.

Subash, A. A.

Swartling, J.

Taitelbaum, H.

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Thrane, L.

Torricelli, A.

Tuchin, V. V.

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7(6), 2088–2094 (2016).
[Crossref] [PubMed]

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

V. V. Tuchin, “Light scattering study of tissues,” Phys. Uspekhi 40(5), 495–515 (1997).
[Crossref]

Valanciunaite, J.

van Gemert, M. J.

van Wieringen, N.

Wabnitz, H.

Weigel, U.

Weiss, A.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

Wolf, M.

Wróbel, M. S.

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7(6), 2088–2094 (2016).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

Yura, H. T.

Zaccanti, G.

Zalevsky, Z.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

Zhang, X.

Zolek, N.

Appl. Opt. (4)

Biomed. Opt. Express (4)

J. Biomed. Opt. (7)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy,” J. Biomed. Opt. 20(8), 085003 (2015).
[Crossref] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

J. Biophotonics (1)

I. Feder, H. Duadi, T. Dreifuss, and D. Fixler, “The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect,” J. Biophotonics 9, 1001–1008 (2015).

J. Innov. Opt. Health Sci. (1)

M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerska, and V. V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innov. Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

Micron (1)

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Pattern projection for subpixel resolved imaging in microscopy,” Micron 38(2), 115–120 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (2)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Uspekhi (1)

V. V. Tuchin, “Light scattering study of tissues,” Phys. Uspekhi 40(5), 495–515 (1997).
[Crossref]

The Open Optics Journal (1)

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Other (3)

Ankri, R., H. Duadi, and D. Fixler. “A new diagnostic tool based on diffusion reflection measurements of gold nanoparticles,” SPIE BiOS. (2012).

R. Ankri, “Non Invasive Optical Technique for the Investigation of Tissue Structure and Physiology,” Ph.D. Thesis, 4–11 (2012).

M. Jędrzejewska-Szczerska, M. S. Wróbel, S. Galla, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, “Investigation of photothermolysis therapy of human skin diseases using optical phantoms,” SPIE Proc. 9447, 944715 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the experimental system, where θ is the detector's angle.

Fig. 2
Fig. 2

An irradiated finger phantom placed in the full scattering profile system. A portable photodetector collects the light intensity from all scattering directions.

Fig. 3
Fig. 3

(a) Influence of reduced scattering coefficient on the full scattering profile; Intensity of light at each angle between 0 to 145 degrees for different reduced scattering coefficients (diamond, square, triangle and x in respect to 2.6, 1.6, 1, and 0.8mm−1), where phantom diameter is 10mm. (b) Influence of phantom diameter on the isobaric point angle. A linear dependency is presented between the central angle of the isobaric point and the phantom diameter.

Fig. 4
Fig. 4

Measurements of the full scattering profile of finger tissue-like phantoms with different reduced scattering coefficients; Intensity of light at each angle between 0 to 145° for different reduced scattering coefficients (squares circles and diamonds in respect to µs' = 1.626 ± 0.015 mm–1, testing phantom and µs' = 2.535 ± 0.014mm–1).

Fig. 5
Fig. 5

Comparison between the full scattering profiles of PDMS finger tissue-like phantom and IL phantoms (triangles, squares, circles and diamonds represent IL phantom, PDMS phantoms: µs' = 1.626 ± 0.015 mm–1, testing phantom and µs' = 2.535 ± 0.014mm–1).

Metrics