Abstract

We propose a single fiber optical system for monitoring tissue oxygen saturation (sO2) based on continuous-wave reflectance spectroscopy in the visible wavelengths. The system is designed for measurements in deep brain structures by stereotaxically implanting the 200 μm-core fiber probe into the tissue of interest. Monte Carlo (MC) simulations were used to estimate the measurement tissue volume between 0.02–0.03 mm3. Experiments in an optical phantom indicated the system had a root mean squared error (RMSE) of 4.21% compared with a commercial fluorescence-based tissue oxygen partial pressure measuring system. Finally, we used the system for continuously monitoring tissue sO2 from a highly-localized volume in anesthetized mice.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Oxygen saturation estimation in brain tissue using diffuse reflectance spectroscopy along stereotactic trajectories

Peter Rejmstad, Peter Zsigmond, and Karin Wårdell
Opt. Express 25(7) 8192-8201 (2017)

Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS

Matthew Kewin, Ajay Rajaram, Daniel Milej, Androu Abdalmalak, Laura Morrison, Mamadou Diop, and Keith St Lawrence
Biomed. Opt. Express 10(9) 4789-4802 (2019)

In vivo local determination of tissue optical properties: applications to human brain

Frédéric Bevilacqua, Dominique Piguet, Pierre Marquet, Jeffrey D. Gross, Bruce J. Tromberg, and Christian Depeursinge
Appl. Opt. 38(22) 4939-4950 (1999)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
    [Crossref] [PubMed]
  2. T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC Press, 2014).
  3. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
    [Crossref] [PubMed]
  4. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
    [Crossref] [PubMed]
  5. F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
    [Crossref] [PubMed]
  6. J. Griffiths and S. Robinson, “The OxyLite: A fibre-optic oxygen sensor,” Brit. J. Radiol. 72, 627–630 (1999).
    [Crossref]
  7. E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
    [Crossref] [PubMed]
  8. H. Adelsberger, O. Garaschuk, and A. Konnerth, “Cortical calcium waves in resting newborn mice,” Nat. Neurosci. 8, 988–990 (2005).
    [Crossref] [PubMed]
  9. K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
    [Crossref] [PubMed]
  10. A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
    [Crossref] [PubMed]
  11. R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60, 268–280 (2013).
    [Crossref]
  12. L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
    [Crossref] [PubMed]
  13. L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.
  14. S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
    [Crossref] [PubMed]
  15. S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
    [Crossref]
  16. A. Sircan-Kuçuksayan, T. Denkceken, and M. Canpolat, “Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters,” J. Biomed. Opt. 20, 115007 (2015).
    [Crossref] [PubMed]
  17. L. Yu and K. Murari, “Design of a single-fiber, wavelength-resolved system for monitoring deep tissue oxygenation,” Proceedings of the 36th Annual Conference of the IEEE Engineering in Medicine and Biology Society pp. 3707–3710 (2014).
  18. Physical properties of glycerine and its solutions (Glycerine Producers’ Association, 1963).
  19. S. Kanick, H. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17, 860–871 (2009).
    [Crossref] [PubMed]
  20. S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
    [Crossref] [PubMed]
  21. L. Wang, S. L. Jacques, and L. Zheng, “MCML: Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [Crossref] [PubMed]
  22. J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
    [Crossref]
  23. H. J. Van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. Van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [Crossref] [PubMed]
  24. H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
    [Crossref] [PubMed]
  25. C.-F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of sprague-dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106, 775–782 (1993).
    [Crossref] [PubMed]
  26. A. Amelink, T. Christiaanse, and H. J. Sterenborg, “Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation,” Opt. Lett. 34, 1525–1527 (2009).
    [Crossref] [PubMed]
  27. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).
  28. B. Weber and F. Helmchen, Optical Imaging of Neocortical Dynamics (Springer, 2014).
    [Crossref]

2015 (1)

A. Sircan-Kuçuksayan, T. Denkceken, and M. Canpolat, “Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters,” J. Biomed. Opt. 20, 115007 (2015).
[Crossref] [PubMed]

2014 (1)

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

2013 (4)

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
[Crossref] [PubMed]

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60, 268–280 (2013).
[Crossref]

2012 (2)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

2010 (4)

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

2007 (1)

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[Crossref] [PubMed]

2005 (1)

H. Adelsberger, O. Garaschuk, and A. Konnerth, “Cortical calcium waves in resting newborn mice,” Nat. Neurosci. 8, 988–990 (2005).
[Crossref] [PubMed]

2004 (1)

H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
[Crossref] [PubMed]

1999 (1)

J. Griffiths and S. Robinson, “The OxyLite: A fibre-optic oxygen sensor,” Brit. J. Radiol. 72, 627–630 (1999).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML: Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

1993 (1)

C.-F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of sprague-dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106, 775–782 (1993).
[Crossref] [PubMed]

1991 (1)

Adamantidis, A. R.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Adelsberger, H.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

H. Adelsberger, O. Garaschuk, and A. Konnerth, “Cortical calcium waves in resting newborn mice,” Nat. Neurosci. 8, 988–990 (2005).
[Crossref] [PubMed]

Adhikari, A.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Aerts, J. G.

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

Aghamiri, S. M. R.

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

Airan, R. D.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Amelink, A.

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

S. Kanick, H. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17, 860–871 (2009).
[Crossref] [PubMed]

A. Amelink, T. Christiaanse, and H. J. Sterenborg, “Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation,” Opt. Lett. 34, 1525–1527 (2009).
[Crossref] [PubMed]

Anikeeva, P.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Bains, J.

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Buursma, A.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

Canpolat, M.

A. Sircan-Kuçuksayan, T. Denkceken, and M. Canpolat, “Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters,” J. Biomed. Opt. 20, 115007 (2015).
[Crossref] [PubMed]

Cartheuser, C.-F.

C.-F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of sprague-dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106, 775–782 (1993).
[Crossref] [PubMed]

Christiaanse, T.

de Lecea, L.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Deisseroth, K.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Denkceken, T.

A. Sircan-Kuçuksayan, T. Denkceken, and M. Canpolat, “Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters,” J. Biomed. Opt. 20, 115007 (2015).
[Crossref] [PubMed]

Djamin, R. S.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

Dunn, J.

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Dunn, J. F.

E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
[Crossref] [PubMed]

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

Durand, R.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Engelbrecht, C. J.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Falk, R.

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60, 268–280 (2013).
[Crossref]

Farzaneh, F.

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

Fenno, L. E.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

Finkelstein, J. C.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Fischer, S.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

Fuzesi, T.

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Garaschuk, O.

H. Adelsberger, O. Garaschuk, and A. Konnerth, “Cortical calcium waves in resting newborn mice,” Nat. Neurosci. 8, 988–990 (2005).
[Crossref] [PubMed]

Gradinaru, V.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Griffiths, J.

J. Griffiths and S. Robinson, “The OxyLite: A fibre-optic oxygen sensor,” Brit. J. Radiol. 72, 627–630 (1999).
[Crossref]

Groh, A.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

Grosenick, L.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Gu, Y.

H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
[Crossref] [PubMed]

Gunaydin, L. A.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Helmchen, F.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

B. Weber and F. Helmchen, Optical Imaging of Neocortical Dynamics (Springer, 2014).
[Crossref]

Hillman, E. M.

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[Crossref] [PubMed]

Hoogsteden, H. C.

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
[Crossref] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML: Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Janssens, A. M.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

Johnson, T.

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Kanick, S.

Kanick, S. C.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

Kašcáková, S.

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

Kauvar, I. V.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Kim, J. G.

H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
[Crossref] [PubMed]

Konnerth, A.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

H. Adelsberger, O. Garaschuk, and A. Konnerth, “Cortical calcium waves in resting newborn mice,” Nat. Neurosci. 8, 988–990 (2005).
[Crossref] [PubMed]

Krueppel, R.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Lammel, S.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Liu, H.

H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
[Crossref] [PubMed]

Malenka, R. C.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Mason, R. P.

H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
[Crossref] [PubMed]

Mirzabekov, J. J.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Moes, C. J.

Murari, K.

L. Yu and K. Murari, “Design of a single-fiber, wavelength-resolved system for monitoring deep tissue oxygenation,” Proceedings of the 36th Annual Conference of the IEEE Engineering in Medicine and Biology Society pp. 3707–3710 (2014).

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Natah, S.

E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
[Crossref] [PubMed]

Ortiz-Prado, E.

E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
[Crossref] [PubMed]

Pashaie, R.

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60, 268–280 (2013).
[Crossref]

Prahl, S. A.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

Robinson, S.

J. Griffiths and S. Robinson, “The OxyLite: A fibre-optic oxygen sensor,” Brit. J. Radiol. 72, 627–630 (1999).
[Crossref]

Ronayne, K.

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Rudin, M.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Rühlmann, C.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

Schierloh, A.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

Schlegel, F.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Schröter, A.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Schulz, K.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Shaw, R. A.

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

Sircan-Kuçuksayan, A.

A. Sircan-Kuçuksayan, T. Denkceken, and M. Canpolat, “Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters,” J. Biomed. Opt. 20, 115007 (2015).
[Crossref] [PubMed]

Smith, M. R.

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
[Crossref] [PubMed]

Srinivasan, S.

E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
[Crossref] [PubMed]

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

Sterenborg, H.

Sterenborg, H. J.

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

A. Amelink, T. Christiaanse, and H. J. Sterenborg, “Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation,” Opt. Lett. 34, 1525–1527 (2009).
[Crossref] [PubMed]

Stroh, A.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

Sydekum, E.

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Tabrizi, S. H.

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

Tye, K. M.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

van Assendelft, O. W.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

van der Leest, C.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

Van Gemert, M. J.

van Marie, J.

Van Staveren, H. J.

Vo-Dinh, T.

T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC Press, 2014).

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML: Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Weber, B.

B. Weber and F. Helmchen, Optical Imaging of Neocortical Dynamics (Springer, 2014).
[Crossref]

Wu, Y.

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

Yu, L.

L. Yu and K. Murari, “Design of a single-fiber, wavelength-resolved system for monitoring deep tissue oxygenation,” Proceedings of the 36th Annual Conference of the IEEE Engineering in Medicine and Biology Society pp. 3707–3710 (2014).

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

Zalocusky, K. A.

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Zhang, Q.

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML: Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

Appl. Opt. (1)

Brit. J. Radiol. (1)

J. Griffiths and S. Robinson, “The OxyLite: A fibre-optic oxygen sensor,” Brit. J. Radiol. 72, 627–630 (1999).
[Crossref]

Cell (1)

L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, and K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014).
[Crossref] [PubMed]

Comp. Biochem. Physiol. Comp. Physiol. (1)

C.-F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of sprague-dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106, 775–782 (1993).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML: Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60, 268–280 (2013).
[Crossref]

J. Biomed. Opt. (5)

S. C. Kanick, C. Van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15, 017004 (2010).
[Crossref] [PubMed]

S. H. Tabrizi, S. M. R. Aghamiri, F. Farzaneh, A. Amelink, and H. J. Sterenborg, “Single fiber reflectance spectroscopy on cervical premalignancies: the potential for reduction of the number of unnecessary biopsies,” J. Biomed. Opt. 18, 017002 (2013).
[Crossref]

A. Sircan-Kuçuksayan, T. Denkceken, and M. Canpolat, “Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters,” J. Biomed. Opt. 20, 115007 (2015).
[Crossref] [PubMed]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[Crossref] [PubMed]

J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, and R. A. Shaw, “Monitoring angiogenesis noninvasively with near-infrared spectroscopy,” J. Biomed. Opt. 13, 064043 (2008).
[Crossref]

J. Neurosci. Methods (1)

E. Ortiz-Prado, S. Natah, S. Srinivasan, and J. F. Dunn, “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue pO2,” J. Neurosci. Methods 193, 217–225 (2010).
[Crossref] [PubMed]

J. Thorac. Oncol. (1)

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5, 981–987 (2010).
[Crossref] [PubMed]

Methods Enzymol. (1)

H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol. 386, 349–378 (2004).
[Crossref] [PubMed]

Nat. Methods (1)

K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, and F. Helmchen, “Simultaneous bold fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9, 597–602 (2012).
[Crossref] [PubMed]

Nat. Neurosci. (1)

H. Adelsberger, O. Garaschuk, and A. Konnerth, “Cortical calcium waves in resting newborn mice,” Nat. Neurosci. 8, 988–990 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc. 5, 439–456 (2010).
[Crossref] [PubMed]

Neuroimage (1)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

Neuron (1)

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann, S. Fischer, A. Schierloh, K. Deisseroth, and A. Konnerth, “Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo,” Neuron 77, 1136–1150 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (6)

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

B. Weber and F. Helmchen, Optical Imaging of Neocortical Dynamics (Springer, 2014).
[Crossref]

T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC Press, 2014).

L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari, “Single fiber optical systems for monitoring brain dynamics in deep structures,” in “Bio-Optics: Design and Application,” (Optical Society of America, 2015), pp. JT3A–49.

L. Yu and K. Murari, “Design of a single-fiber, wavelength-resolved system for monitoring deep tissue oxygenation,” Proceedings of the 36th Annual Conference of the IEEE Engineering in Medicine and Biology Society pp. 3707–3710 (2014).

Physical properties of glycerine and its solutions (Glycerine Producers’ Association, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic drawing of the system showing light emitting diode (LED), collimating lens (L1), mirror (M), beam splitter (BS), focusing lenses (L2, L3), fiber (F), polarizers (Pol1, Pol2) and spectrometer (S).
Fig. 2
Fig. 2 Normalized spectrum in 500–700 nm of the warm white LED.
Fig. 3
Fig. 3 A schematic drawing of the experimental setup for system validation in a phantom.
Fig. 4
Fig. 4 Photograph of the experimental setup showing the fiber tip, burr hole for insertion and nosecone for oxygen control. Second burr hole for Oxylite probe insertion not shown.
Fig. 5
Fig. 5 Maps showing absorption events that contribute to the collected signal estimated using MC simulations. All simulations assume scattering from 2% intralipid and absorption from 50 μM hemolgobin. (a)–(c) 0 oxygen saturation at 500, 600 and 700 nm, respectively. (d)–(f) 100% oxygen saturation at 500, 600 and 700 nm, respectively. Black bar indicates fiber. Sampled volumes are 0.02–0.03 mm3.
Fig. 6
Fig. 6 The calculated sO2 using the single fiber system in the phantom. Gray area shows the bounds given by the OxyLite system. (A) Calculated sO2 as a time sequence. (B) Calculated sO2 against the reference system.
Fig. 7
Fig. 7 RSF and the fitted spectra when the measured sO2 were 0 and 56%, and the molar absorption spectra of hemoglobin with Hb:HbO ratio of 1:0 and 0.44:0.56, corresponding to the sO2 values. Peaks (valleys) in absorption agree well with lows (highs) in reflection.
Fig. 8
Fig. 8 The calculated sO2 (black) and pO2 measured by OxyLite (blue) vs. time in-vivo in one mouse. Dashed lines show the time of oxygen changes.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = I sig I in
R SF = S sam S mat S air S gly
R SF = R 0 e μ a L SF
μ a = C v ρ ( s O 2 μ a HbO + ( 1 s O 2 ) μ a Hb )
L SF = 1.54 d fiber ( μ s d fiber ) 0.18 ( 0.61 + ( μ a d fiber ) 0.61 )
μ s = a λ b
p O 2 s = p O 2 × 10 0.61 ( pH 7.4 )
s O 2 = ( p O 2 s ) n ( p O 2 s ) n + ( P 50 ) n × 100 %

Metrics