Abstract

We developed ultra-high-speed, phase-sensitive, full-field reflection interferometric confocal microscopy (FFICM) for the quantitative characterization of in vivo microscale biological motions and flows. We demonstrated 2D frame rates in excess of 1 kHz and pixel throughput rates up to 125 MHz. These fast FFICM frame rates were enabled by the use of a low spatial coherence, high-power laser source. Specifically, we used a dense vertical cavity surface emitting laser (VCSEL) array that synthesized low spatial coherence light through a large number of narrowband, mutually-incoherent emitters. Off-axis interferometry enabled single-shot acquisition of the complex-valued interferometric signal. We characterized the system performance (~2 μm lateral resolution, ~8 μm axial gating depth) with a well-known target. We also demonstrated the use of this highly parallelized confocal microscopy platform for visualization and quantification of cilia-driven surface flows and cilia beat frequency in an important animal model (Xenopus embryos) with >1 kHz frame rate. Such frame rates are needed to see large changes in local flow velocity over small distance (high shear flow), in this case, local flow around a single ciliated cell. More generally, our results are an important demonstration of low-spatial coherence, high-power lasers in high-performance, quantitative biomedical imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry

Stephan Jonas, Dipankan Bhattacharya, Mustafa K. Khokha, and Michael A. Choma
Biomed. Opt. Express 2(7) 2022-2034 (2011)

High-speed line-field confocal holographic microscope for quantitative phase imaging

Changgeng Liu, Sebastian Knitter, Zhilong Cong, Ikbal Sencan, Hui Cao, and Michael A. Choma
Opt. Express 24(9) 9251-9265 (2016)

Full-field interferometric confocal microscopy using a VCSEL array

Brandon Redding, Yaron Bromberg, Michael A. Choma, and Hui Cao
Opt. Lett. 39(15) 4446-4449 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
    [Crossref] [PubMed]
  3. B. K. Huang and M. A. Choma, “Microscale imaging of cilia-driven fluid flow,” Cell. Mol. Life Sci. 72(6), 1095–1113 (2015).
    [Crossref] [PubMed]
  4. A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
    [Crossref] [PubMed]
  5. H. Zhu and A. Ozcan, “Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis,” Methods Mol. Biol. 1256, 171–190 (2015).
    [Crossref] [PubMed]
  6. M. R. Knowles and R. C. Boucher, “Mucus clearance as a primary innate defense mechanism for mammalian airways,” J. Clin. Invest. 109(5), 571–577 (2002).
    [Crossref] [PubMed]
  7. S. H. Randell and R. C. Boucher, “Effective mucus clearance is essential for respiratory health,” Am. J. Respir. Cell Mol. Biol. 35(1), 20–28 (2006).
    [Crossref] [PubMed]
  8. A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013).
    [Crossref] [PubMed]
  9. A. L. Oldenburg, R. K. Chhetri, D. B. Hill, and B. Button, “Monitoring airway mucus flow and ciliary activity with optical coherence tomography,” Biomed. Opt. Express 3(9), 1978–1992 (2012).
    [Crossref] [PubMed]
  10. B. K. Huang, U. A. Gamm, V. Bhandari, M. K. Khokha, and M. A. Choma, “Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography,” Biomed. Opt. Express 6(9), 3515–3538 (2015).
    [Crossref] [PubMed]
  11. L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
    [Crossref] [PubMed]
  12. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
    [Crossref] [PubMed]
  13. E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P. C. Sun, and D. Dilworth, “Imaging through scattering media using spatial incoherence techniques,” Opt. Lett. 16(23), 1820–1822 (1991).
    [Crossref] [PubMed]
  14. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [Crossref]
  15. R. Chmelik and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
    [Crossref]
  16. M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174(1-4), 75–80 (2000).
    [Crossref]
  17. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref] [PubMed]
  18. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref] [PubMed]
  19. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
    [Crossref] [PubMed]
  20. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [Crossref] [PubMed]
  21. A. Safrani and I. Abdulhalim, “Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography,” Appl. Opt. 50(18), 3021–3027 (2011).
    [Crossref] [PubMed]
  22. T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošťák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21(12), 14747–14762 (2013).
    [Crossref] [PubMed]
  23. Y. Choi, P. Hosseini, W. Choi, R. R. Dasari, P. T. C. So, and Z. Yaqoob, “Dynamic speckle illumination wide-field reflection phase microscopy,” Opt. Lett. 39(20), 6062–6065 (2014).
    [Crossref] [PubMed]
  24. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  25. B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
    [Crossref] [PubMed]
  26. B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
    [Crossref] [PubMed]
  27. B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
    [Crossref] [PubMed]
  28. S. Knitter, C. G. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
    [Crossref]
  29. S. Jonas, D. Bhattacharya, M. K. Khokha, and M. A. Choma, “Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry,” Biomed. Opt. Express 2(7), 2022–2034 (2011).
    [Crossref] [PubMed]
  30. M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
    [Crossref] [PubMed]
  31. P. Nieuwkoop and J. Faber, Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis (Garland Publishing, Inc, New York, 1994).
  32. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  33. E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
    [Crossref] [PubMed]
  34. K. C. Zhou, B. K. Huang, U. A. Gamm, V. Bhandari, M. K. Khokha, and M. A. Choma, “Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows,” Biomed. Opt. Express 7(4), 1590–1603 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (7)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref] [PubMed]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref] [PubMed]

B. K. Huang and M. A. Choma, “Microscale imaging of cilia-driven fluid flow,” Cell. Mol. Life Sci. 72(6), 1095–1113 (2015).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

H. Zhu and A. Ozcan, “Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis,” Methods Mol. Biol. 1256, 171–190 (2015).
[Crossref] [PubMed]

B. K. Huang, U. A. Gamm, V. Bhandari, M. K. Khokha, and M. A. Choma, “Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography,” Biomed. Opt. Express 6(9), 3515–3538 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošťák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21(12), 14747–14762 (2013).
[Crossref] [PubMed]

A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013).
[Crossref] [PubMed]

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2009 (1)

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

S. H. Randell and R. C. Boucher, “Effective mucus clearance is essential for respiratory health,” Am. J. Respir. Cell Mol. Biol. 35(1), 20–28 (2006).
[Crossref] [PubMed]

2004 (2)

2002 (2)

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
[Crossref] [PubMed]

M. R. Knowles and R. C. Boucher, “Mucus clearance as a primary innate defense mechanism for mammalian airways,” J. Clin. Invest. 109(5), 571–577 (2002).
[Crossref] [PubMed]

2000 (1)

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174(1-4), 75–80 (2000).
[Crossref]

1999 (1)

R. Chmelik and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

1997 (1)

1996 (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

1991 (1)

Abdulhalim, I.

Ahmadi, P.

Antoš, M.

Auksorius, E.

Badizadegan, K.

Beaurepaire, E.

Bhandari, V.

Bhattacharya, D.

Birket, S. E.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Boas, D. A.

Boccara, A. C.

Boccara, C.

Bolmont, T.

Boucher, R. C.

S. H. Randell and R. C. Boucher, “Effective mucus clearance is essential for respiratory health,” Am. J. Respir. Cell Mol. Biol. 35(1), 20–28 (2006).
[Crossref] [PubMed]

M. R. Knowles and R. C. Boucher, “Mucus clearance as a primary innate defense mechanism for mammalian airways,” J. Clin. Invest. 109(5), 571–577 (2002).
[Crossref] [PubMed]

Bouwens, A.

Bromberg, Y.

Button, B.

Byan-Parker, S.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Cao, H.

Cerjan, A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Chen, C.

Chen, C. L.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Chen, H.

Chen, Y.

Chhetri, R. K.

Chmelik, R.

R. Chmelik and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

Chmelík, R.

Choi, W.

Choi, Y.

Choma, M. A.

S. Knitter, C. G. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
[Crossref]

K. C. Zhou, B. K. Huang, U. A. Gamm, V. Bhandari, M. K. Khokha, and M. A. Choma, “Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows,” Biomed. Opt. Express 7(4), 1590–1603 (2016).
[Crossref] [PubMed]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref] [PubMed]

B. K. Huang, U. A. Gamm, V. Bhandari, M. K. Khokha, and M. A. Choma, “Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography,” Biomed. Opt. Express 6(9), 3515–3538 (2015).
[Crossref] [PubMed]

B. K. Huang and M. A. Choma, “Microscale imaging of cilia-driven fluid flow,” Cell. Mol. Life Sci. 72(6), 1095–1113 (2015).
[Crossref] [PubMed]

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

S. Jonas, D. Bhattacharya, M. K. Khokha, and M. A. Choma, “Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry,” Biomed. Opt. Express 2(7), 2022–2034 (2011).
[Crossref] [PubMed]

Chu, K. K.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Dasari, R.

Dasari, R. R.

Diephuis, B. J.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Dierksen, G.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Dilworth, D.

Dostál, Z.

Dubois, A.

Feld, M. S.

Ford, M. R.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Gamm, U. A.

Goh, J.

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174(1-4), 75–80 (2000).
[Crossref]

Grieve, K.

Grizzle, W. E.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Gu, S.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Harna, Z.

R. Chmelik and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

Hill, D. B.

Hosseini, P.

Houser, G. H.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Huang, B. K.

Huang, X.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Huisman, F.

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

Hwang, P.

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

Jenkins, M. W.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Jiang, J. Y.

Jonas, S.

Juskaitis, R.

Karamata, B.

Karunamuni, G. H.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Khokha, M. K.

Knitter, S.

Knowles, M. R.

M. R. Knowles and R. C. Boucher, “Mucus clearance as a primary innate defense mechanism for mammalian airways,” J. Clin. Invest. 109(5), 571–577 (2002).
[Crossref] [PubMed]

Kolman, P.

Lambelet, P.

Lasser, T.

Laubscher, M.

Lecaque, R.

Lee, J.

Lee, M. L.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Leith, E. N.

Li, Y.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Liu, C. G.

Liu, L.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Lopez, J.

Lošták, M.

Ma, P.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Mazur, M.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Mitchell, B. J.

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

Mokan, V.

Moneron, G.

Neil, M. A. A.

Oldenburg, A. L.

Ozcan, A.

H. Zhu and A. Ozcan, “Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis,” Methods Mol. Biol. 1256, 171–190 (2015).
[Crossref] [PubMed]

Park, Y.

Peterson, L. M.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Randell, S. H.

S. H. Randell and R. C. Boucher, “Effective mucus clearance is essential for respiratory health,” Am. J. Respir. Cell Mol. Biol. 35(1), 20–28 (2006).
[Crossref] [PubMed]

Redding, B.

Rollins, A. M.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Rowe, S. M.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Safrani, A.

Salathé, R. P.

See, C. W.

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174(1-4), 75–80 (2000).
[Crossref]

Seifert, M.

Shastry, S.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Slabý, T.

So, P. T. C.

Somekh, M. G.

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174(1-4), 75–80 (2000).
[Crossref]

Sorscher, E. J.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Stone, A. D.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Sun, P. C.

Szkulmowski, M.

Szlag, D.

Taborek, P.

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

Tearney, G. J.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Vabre, L.

Wang, R. K. K.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Wang, Y. T.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Watanabe, M.

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Werner, M. E.

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

Wilson, T.

Wilsterman, E. J.

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Wojtkowski, M.

Wu, W.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yaqoob, Z.

Yu, C. C.

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

Zhang, A.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhang, Q.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhou, K. C.

Zhu, B.

Zhu, H.

H. Zhu and A. Ozcan, “Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis,” Methods Mol. Biol. 1256, 171–190 (2015).
[Crossref] [PubMed]

Am. J. Respir. Cell Mol. Biol. (1)

S. H. Randell and R. C. Boucher, “Effective mucus clearance is essential for respiratory health,” Am. J. Respir. Cell Mol. Biol. 35(1), 20–28 (2006).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (4)

Cell. Mol. Life Sci. (1)

B. K. Huang and M. A. Choma, “Microscale imaging of cilia-driven fluid flow,” Cell. Mol. Life Sci. 72(6), 1095–1113 (2015).
[Crossref] [PubMed]

Front. Physiol. (1)

G. H. Karunamuni, S. Gu, M. R. Ford, L. M. Peterson, P. Ma, Y. T. Wang, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Capturing structure and function in an embryonic heart with biophotonic tools,” Front. Physiol. 5, 351 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Zhang, Q. Zhang, C. L. Chen, and R. K. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

J. Cell Biol. (1)

M. E. Werner, P. Hwang, F. Huisman, P. Taborek, C. C. Yu, and B. J. Mitchell, “Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells,” J. Cell Biol. 195(1), 19–26 (2011).
[Crossref] [PubMed]

J. Clin. Invest. (1)

M. R. Knowles and R. C. Boucher, “Mucus clearance as a primary innate defense mechanism for mammalian airways,” J. Clin. Invest. 109(5), 571–577 (2002).
[Crossref] [PubMed]

Methods Mol. Biol. (1)

H. Zhu and A. Ozcan, “Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis,” Methods Mol. Biol. 1256, 171–190 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174(1-4), 75–80 (2000).
[Crossref]

Opt. Eng. (1)

R. Chmelik and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Optica (1)

PLoS One (1)

L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket, M. Mazur, S. Byan-Parker, W. E. Grizzle, E. J. Sorscher, S. M. Rowe, and G. J. Tearney, “Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography,” PLoS One 8(1), e54473 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Other (1)

P. Nieuwkoop and J. Faber, Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis (Garland Publishing, Inc, New York, 1994).

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (2010 KB)      Z-stack movie
» Visualization 2: MP4 (197 KB)      Cilia flow near an individual ciliated cell
» Visualization 3: MP4 (180 KB)      Cilia flow near two ciliated cells
» Visualization 4: MP4 (3743 KB)      Cilia flow at different effective frame rates

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Full-field interferometric confocal microscopy setup is illustrated. The scale bar on the inset image of the VCSEL array chip is 20 μm long.
Fig. 2
Fig. 2 The amplitude (c) and phase (d) of the complex interferometric signal is retrieved by filtering the 2D spatial Fourier transform (b) of the off-axis raw image (a). The scale bar is 10 μm long. The amplitude profile over the bars (0.98 μm thick) of USAF target ninth group first element (e) suggests the spatial resolution of the system to be approximately 2 μm. Also, the thickness of the chrome coating is estimated from the phase profile (f). The total intensity resulted from noninterferometric and interferometric detection are shown as a mirror is moved through the focus on sample arm. (g) Curves are normalized with the maximum value of each curve. Interferometric detection using VCSEL array provides axial gating (~8 μm) by rejecting out-1of-focus light.
Fig. 3
Fig. 3 Maximum intensity projection images over 2.43ms, 250 images at different heights from a pigmented region on the Xenopus skin, z = 0 μm (a), 76.43 μm (b), and 128.46 μm (c) are reported to show the change in flow profile as a function of depth. Data acquisition frequency is 1380.26 Hz. The scale bar is 10 μm long. The field of view is 87 µm by 87 µm (512x512 pixels). Visualization 1 has the same FOV. a, anterior (towards the head); d, dorsal; p, posterior (towards the tail); v, ventral.
Fig. 4
Fig. 4 The standard deviation images (a and c, grayscale) are overlaid with the dominant frequency maps (b and d, 16-color) over two ROIs on different tadpoles. Note how the spatial distributions of the dominant frequencies overlap with ciliated regions that are in focus. The intensity fluctuations from one pixel within the anterior ciliated region of (c) is plotted as an example (e). The Fourier transform of this signal (f) peaks at 18.7 Hz, which corresponds to the measured cilia beating frequency at this location. The scale bar is 10 μm long. The field of view is 87 µm by 87 µm (512x512 pixels).
Fig. 5
Fig. 5 The cilia-driven flow on Xenopus tropicalis embryo (same ROI as Fig. 4a-b) at Nieuwkoop-Faber stage [31] early 30s (a) is analyzed with FFICM setup. Standard deviation image over time (magenta) emphasizes the skin boundary and structures. The white arrow marks a region with multi-ciliated cells. This standard deviation image is overlaid with maximum intensity projection (green) images over 0.23 s, 250 frames (b) and 9.14 s, 10,000 frames (c) to emphasize the flow profile over the skin. A nine-image montage (d) is showing the movement of a bead over the multi-ciliated cells. The white strike that shows the bead path (red arrow) gets longer as the bead moves faster around the cilia patch. The speed of the particle on the image plane is calculated by dividing the traveled path to the total time. Each image is the maximum intensity projection of 10 frames. The scale bar is 10 μm long. The field of view is 87 µm by 87 µm (512x512 pixels). Visualization 2 has the same FOV. The acquisition frame rate is 1,093.85 Hz.
Fig. 6
Fig. 6 The cilia-driven flow on a tadpole embryo (same ROI as Fig. 4(c)-4(d)) at stage early 40s is quantified. Standard deviation image (magenta) is overlaid with maximum intensity projection (green) image (over 0.77 s, 1000 frames) (a) to emphasize the flow profile over the skin. Posterior ciliated region is slightly out-of-focus. The total speed on the en-face plane for one bead is shown over its trajectory (b). Two white arrows mark the areas with multi-ciliated cells. The speed vs. time graph (c) clearly shows how the bead speed up in the proximity of the ciliated region. The field of view is 87 µm by 87 µm (512x512 pixels). Visualization 3 has the same FOV. Data acquisition frequency is 1,308.04 Hz.

Metrics