Abstract

N-acyl-7-nitroindolines have been used as caged compounds to photorelease active molecules by a one- or two-photon excitation mechanism in biological systems. Here, we report the photolysis of a polypeptide that contains 7-nitroindoline units as linker moieties in its peptide backbone for potential materials engineering applications. Upon two-photon excitation with femtosecond laser light at 710 nm the photoreactive amide bond in N-peptidyl-7-nitroindolines is cleaved rendering short peptide fragments. Thus, this photochemical process changes the molecular composition at the laser focal volume. Gel modifications of this peptide can potentially be used for three-dimensional microstructure fabrication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of two-photon absorption cross sections of photosensitizers and its implications for two-photon polymerization

Bibi Safia Haq, Hidayat Ullah Khan, Khan Alam, Muhammad Ajmal, Shehnaz Attaullah, and Islam Zari
Appl. Opt. 54(1) 132-140 (2015)

Two-photon induced collagen cross-linking in bioartificial cardiac tissue

Kai Kuetemeyer, George Kensah, Marko Heidrich, Heiko Meyer, Ulrich Martin, Ina Gruh, and Alexander Heisterkamp
Opt. Express 19(17) 15996-16007 (2011)

Detection of fluorescence from O and N atoms induced by two-photon absorption

William K. Bischel, Bryce E. Perry, and David R. Crosley
Appl. Opt. 21(8) 1419-1429 (1982)

References

  • View by:
  • |
  • |
  • |

  1. P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
    [Crossref] [PubMed]
  2. G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
    [Crossref] [PubMed]
  3. A. Herrmann, “Using photolabile protecting groups for the controlled release of bioactive volatiles,” Photochem. Photobiol. Sci. 11(3), 446–459 (2012).
    [Crossref] [PubMed]
  4. W.-H. Li and G. Zheng, “Photoactivatable fluorophores and techniques for biological imaging applications,” Photochem. Photobiol. Sci. 11(3), 460–471 (2012).
    [Crossref] [PubMed]
  5. M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [Crossref]
  6. A. Ornelas, K. N. Williams, K. A. Hatch, T. Boland, B. Joddar, C. Li, and K. Michael, unpublished data, (2016).
  7. S. M. Yu, Y. Li, and D. Kim, “Collagen mimetic peptides: progress towards functional applications,” Soft Matter 7(18), 7927–7938 (2011).
    [Crossref] [PubMed]
  8. G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
    [Crossref]
  9. G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
    [Crossref] [PubMed]
  10. M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
    [Crossref] [PubMed]
  11. Y. Acosta, Q. Zhang, A. Rahaman, H. Ouellet, C. Xiao, J. Sun, and C. Li, “Imaging cytosolic translocation of Mycobacteria with two-photon fluorescence resonance energy transfer microscopy,” Biomed. Opt. Express 5(11), 3990–4001 (2014).
    [Crossref] [PubMed]
  12. T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
    [Crossref] [PubMed]
  13. A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
    [Crossref] [PubMed]

2015 (1)

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

2012 (2)

A. Herrmann, “Using photolabile protecting groups for the controlled release of bioactive volatiles,” Photochem. Photobiol. Sci. 11(3), 446–459 (2012).
[Crossref] [PubMed]

W.-H. Li and G. Zheng, “Photoactivatable fluorophores and techniques for biological imaging applications,” Photochem. Photobiol. Sci. 11(3), 460–471 (2012).
[Crossref] [PubMed]

2011 (1)

S. M. Yu, Y. Li, and D. Kim, “Collagen mimetic peptides: progress towards functional applications,” Soft Matter 7(18), 7927–7938 (2011).
[Crossref] [PubMed]

2009 (1)

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

2007 (2)

G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
[Crossref] [PubMed]

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

2005 (1)

G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
[Crossref] [PubMed]

2001 (1)

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

1999 (1)

G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
[Crossref]

Acosta, Y.

Barth, A.

G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
[Crossref]

Blanc, A.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Bochet, C. G.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Cai, Z.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

Castillo, E. M.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

Chichkov, B. N.

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Chu, C. H. L.

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Corrie, J. E. T.

G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
[Crossref] [PubMed]

G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
[Crossref]

Dirk, C. W.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

Ellis-Davies, G. C. R.

G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
[Crossref] [PubMed]

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Farsari, M.

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Franz, A. H.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

Gammon, A. J.

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Givens, R.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Herrmann, A.

A. Herrmann, “Using photolabile protecting groups for the controlled release of bioactive volatiles,” Photochem. Photobiol. Sci. 11(3), 446–459 (2012).
[Crossref] [PubMed]

Hogenauer, T. J.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Iino, M.

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Kajihara, Y.

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Kaneshiro, C. M.

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Kasai, H.

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Kelly, G.

G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
[Crossref] [PubMed]

Kim, D.

S. M. Yu, Y. Li, and D. Kim, “Collagen mimetic peptides: progress towards functional applications,” Soft Matter 7(18), 7927–7938 (2011).
[Crossref] [PubMed]

Klán, P.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Kostikov, A.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Li, C.

Li, W.-H.

W.-H. Li and G. Zheng, “Photoactivatable fluorophores and techniques for biological imaging applications,” Photochem. Photobiol. Sci. 11(3), 460–471 (2012).
[Crossref] [PubMed]

Li, Y.

S. M. Yu, Y. Li, and D. Kim, “Collagen mimetic peptides: progress towards functional applications,” Soft Matter 7(18), 7927–7938 (2011).
[Crossref] [PubMed]

Matsuzaki, M.

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Michael, K.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Miyashita, Y.

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Nemoto, T.

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Ogden, D.

G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
[Crossref] [PubMed]

Ogden, D. C.

G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
[Crossref]

Ouellet, H.

Papageorgiou, G.

G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
[Crossref] [PubMed]

G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
[Crossref]

Pardo, A.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

Popik, V.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Rahaman, A.

Rubina, M.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Sanki, A. K.

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Šolomek, T.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Sun, J.

Vellucci, J. A.

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

Wang, Q.

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Wirz, J.

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

Xiao, C.

Yu, S. M.

S. M. Yu, Y. Li, and D. Kim, “Collagen mimetic peptides: progress towards functional applications,” Soft Matter 7(18), 7927–7938 (2011).
[Crossref] [PubMed]

Zhang, Q.

Zheng, G.

W.-H. Li and G. Zheng, “Photoactivatable fluorophores and techniques for biological imaging applications,” Photochem. Photobiol. Sci. 11(3), 460–471 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Rev. (1)

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms And Efficacy,” Chem. Rev. 113(1), 119–191 (2013).
[Crossref] [PubMed]

ChemBioChem (1)

A. Pardo, T. J. Hogenauer, Z. Cai, J. A. Vellucci, E. M. Castillo, C. W. Dirk, A. H. Franz, and K. Michael, “Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters,” ChemBioChem 16(13), 1884–1889 (2015).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

G. Papageorgiou, D. C. Ogden, A. Barth, and J. E. T. Corrie, “Photorelease of Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution: Rapid and Efficient Photorelease of l-Glutamate1,” J. Am. Chem. Soc. 121(27), 6503–6504 (1999).
[Crossref]

Nat. Methods (1)

G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
[Crossref] [PubMed]

Nat. Neurosci. (1)

M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nat. Neurosci. 4(11), 1086–1092 (2001).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Org. Biomol. Chem. (1)

T. J. Hogenauer, Q. Wang, A. K. Sanki, A. J. Gammon, C. H. L. Chu, C. M. Kaneshiro, Y. Kajihara, and K. Michael, “Virtually epimerization-free synthesis of peptide-α-thioesters,” Org. Biomol. Chem. 5(5), 759–762 (2007).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (3)

G. Papageorgiou, D. Ogden, G. Kelly, and J. E. T. Corrie, “Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines,” Photochem. Photobiol. Sci. 4(11), 887–896 (2005).
[Crossref] [PubMed]

A. Herrmann, “Using photolabile protecting groups for the controlled release of bioactive volatiles,” Photochem. Photobiol. Sci. 11(3), 446–459 (2012).
[Crossref] [PubMed]

W.-H. Li and G. Zheng, “Photoactivatable fluorophores and techniques for biological imaging applications,” Photochem. Photobiol. Sci. 11(3), 460–471 (2012).
[Crossref] [PubMed]

Soft Matter (1)

S. M. Yu, Y. Li, and D. Kim, “Collagen mimetic peptides: progress towards functional applications,” Soft Matter 7(18), 7927–7938 (2011).
[Crossref] [PubMed]

Other (1)

A. Ornelas, K. N. Williams, K. A. Hatch, T. Boland, B. Joddar, C. Li, and K. Michael, unpublished data, (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A polypeptide with built-in photoreactive moieties (red) may undergo photolysis at all photoreactive sites when irradiated with a femtosecond laser at 710 nm. This photolysis generates a number of small peptide fragments. (b) Molecular structure of peptide 1: 34-mer peptide with four photoreactive N-peptidyl-7-nitroindoline units (red), which themselves can be regarded as amino acids.

Fig. 2
Fig. 2

Schematic of the assembly of a photoreactive polypeptide by on-resin fragment condensation. Red moieties = photoreactive N-peptidyl-7-nitroindoline; tBu = tert-butyl (permanent protecting group); Fmoc = flourenylmethyloxycarbonyl (temporary protecting group).

Fig. 3
Fig. 3

Images of a sample of peptide 1 before (a) and after (b) irradiation at different laser powers, exhibiting formation of dark spots corresponding to photolysis products consisting of peptide fragments with 7-nitroindoline and/or 7-nitrosoindole covalently attached to them.

Fig. 4
Fig. 4

Fluorescence images and quantified decay of peptide 1. (a) Fluorescence image taken at 1 minute with laser power of 200 mW; (b) 2 minutes image; (c) 4 minutes image; (d) 8 minutes image. (e) Normalized fluorescence decay data and fitting curves for varied laser power. (f) Double-log plot of reaction rate vs. laser intensity for the synthetic photoreactive peptide 1.

Fig. 5
Fig. 5

High Resolution Electrospray Ionization-Time of Flight mass spectrum of the crude mixture obtained after irradiation of peptide 1 (sample in Fig. 3(b)). Reported are the monoisotopic masses for each peptide. 1 (C156H197N39O47): m/Z for [M + 4H]4+ calc. 843.1134, found 843.1198; m/Z for [M + 3H]3+ calc. 1123.8153, found 1123.8219; m/Z for [M + 2H + Na]3+ calc. 1131.1426, found 1131.1436; m/Z for [M + H + 2Na]3+ calc. 1138.4699, found 1138.4693; m/Z for [M + 2H]2+ calc. 1685.2190, found 1685.2159; m/Z for [M + H + Na]2+ calc. 1696.2100, found 1696.2161. 2 (C33H42N8O11): m/Z for [M + H]+ calc. 727.3051, found 727.2799. 3 (C33H43N9O10): m/Z for [M + H]+ calc. 726.3211, found 726.2782. 4 (C66H82N16O21): m/Z for [M + H]+ calc. 1435.5919, found 1435.5928; m/Z for [M + Na]+ calc. 1457.5738, found 1457.5810. 5 (C66H83N17O20): m/Z for [M + H]+ calc. 1434.6079, found 1434.6105; m/Z for [M + Na]+ calc. 1456.5898, found 1456.5912. 6 (C57H76N14O18): m/Z for [M + H]+ calc. 1245.5540, found 1245.5488. 7 (C99H122N24O31): m/Z for [M + 2H]2+ calc. 1072.4432, found 1072.4436. 8 (C99H123N25O30): m/Z for [M + 2H]2+ calc. 1071.9512, found 1071.9612. 9 (C90H116N22O28): m/Z for [M + 2H]2+ calc. 977.4243, found 977.4326. 10 (C132H163N33O40): m/Z for [M + 2H]2+ calc. 1426.0946, found 1426.0964. 11 (C123H156N30O38): m/Z for [M + 2H]2+ calc. 1331.5677, found 1331.5742.

Fig. 6
Fig. 6

Photolysis products identified by mass spectrometry.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β  I 2

Metrics