Abstract

We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber’s low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe’s energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery

Onur Ferhanoglu, Murat Yildirim, Kaushik Subramanian, and Adela Ben-Yakar
Biomed. Opt. Express 5(7) 2023-2036 (2014)

Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe

Christopher L. Hoy, Onur Ferhanoğlu, Murat Yildirim, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, and Adela Ben-Yakar
Opt. Express 19(11) 10536-10552 (2011)

Miniaturized probe for femtosecond laser microsurgery and two-photon imaging

Christopher L. Hoy, Nicholas J. Durr, Pengyuan Chen, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, and Adela Ben-Yakar
Opt. Express 16(13) 9996-10005 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  2. G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, 2005).
  3. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
    [PubMed]
  4. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
    [Crossref]
  5. J. Wang, G. Schuele, and D. Palanker, “Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths,” J. Biomed. Opt. 20(12), 125004 (2015).
    [Crossref] [PubMed]
  6. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).
  7. K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
    [Crossref] [PubMed]
  8. J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
    [Crossref] [PubMed]
  9. J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
    [Crossref] [PubMed]
  10. M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
    [Crossref]
  11. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
    [Crossref]
  12. D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
    [Crossref] [PubMed]
  13. C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
    [Crossref] [PubMed]
  14. M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
    [Crossref] [PubMed]
  15. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
    [Crossref]
  16. S. M. Zeitels, A. Ben-Yakar, C. L. Hoy, W. N. Everett, J. B. Kobler, R. R. Anderson, W. A. Farinelli, “Systems, devices and methods for imaging and surgery,” U.S. patent US2013/0211391 A1 (2013).
  17. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
    [Crossref] [PubMed]
  18. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
    [Crossref] [PubMed]
  19. O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
    [Crossref] [PubMed]
  20. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  21. O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19(20), 19142–19149 (2011).
    [Crossref] [PubMed]
  22. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  23. F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
    [Crossref] [PubMed]
  24. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
    [Crossref] [PubMed]
  25. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  26. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637 (1999).
    [Crossref]
  27. J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [Crossref]
  28. A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
    [Crossref]
  29. M. Debenham, “Refractive indices of zinc sulfide in the 0.405-13-[mgr ]m wavelength range,” Appl. Opt. 23(14), 2238 (1984).
    [Crossref] [PubMed]
  30. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
    [Crossref]
  31. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
    [Crossref] [PubMed]
  32. B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 9235–9247 (2008).
    [Crossref]
  33. R. L. Sutherland, Handbook of Nonlinear Optics (1997), Vol. 36.
  34. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
    [Crossref] [PubMed]
  35. R. K. Jamal, M. T. Hussein, and A. M. Suhail, “Three-Photon Absorption in Zno Film Using Ultra Short Pulse Laser,” J. Mod. Phys. 3(08), 856–864 (2012).
    [Crossref]
  36. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
    [Crossref]
  37. K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34(3), 199–202 (2002).
    [Crossref]
  38. H. Huang and Z. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25(4), 517–524 (2010).
    [Crossref] [PubMed]
  39. H. Huang and Z. Guo, “Human dermis separation via ultra-short pulsed laser plasma-mediated ablation,” J. Phys. D Appl. Phys. 42(16), 165204 (2009).
    [Crossref]
  40. F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

2016 (1)

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

2015 (1)

J. Wang, G. Schuele, and D. Palanker, “Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths,” J. Biomed. Opt. 20(12), 125004 (2015).
[Crossref] [PubMed]

2014 (2)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (4)

2011 (3)

2010 (2)

H. Huang and Z. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25(4), 517–524 (2010).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

2009 (1)

H. Huang and Z. Guo, “Human dermis separation via ultra-short pulsed laser plasma-mediated ablation,” J. Phys. D Appl. Phys. 42(16), 165204 (2009).
[Crossref]

2008 (2)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2006 (1)

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

2005 (2)

2004 (2)

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

2003 (2)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

2002 (2)

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34(3), 199–202 (2002).
[Crossref]

1999 (2)

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637 (1999).
[Crossref]

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

1998 (1)

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

1997 (1)

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

1994 (1)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[Crossref]

1993 (1)

K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
[Crossref] [PubMed]

1991 (1)

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

1984 (1)

1975 (1)

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Alharbi, M.

Andersen, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Angeley, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Auguste, J.-L.

Bäcker, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Baer, C. R. E.

Batlle, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Beaudou, B.

Benabid, F.

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
[Crossref] [PubMed]

B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19(20), 19142–19149 (2011).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Ben-Yakar, A.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
[Crossref] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
[Crossref] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
[Crossref] [PubMed]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

Berns, M. W.

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Beyertt, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Bille, J. F.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Blondy, J.-M.

Blumenkranz, M. S.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Booth, T.

Bradley, T. D.

Brodeur, A.

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

Carrasco, W. A.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Chan, A.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Chen, P.

Cheng, Y.

Cheung, E.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Chin, S. L.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Critelli, M.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Culbertson, W.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Da Silva, L. B.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Dawes, J.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Debenham, M.

Durr, N. J.

Dutin, C. F.

Emaury, F.

Everett, W. N.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Feliz, R.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
[Crossref] [PubMed]

Ferincz, I. E.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Fischer, J. P.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Frederickson, K. S.

K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
[Crossref] [PubMed]

Friedman, B.

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Friedman, N. J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Fujishige, J. T.

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Gabay, I.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

Gamaly, E. G.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Gerome, F.

Gerôme, F.

Gérôme, F.

Giesen, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Gooding, P.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Gotz, M. H.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Gu, B.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 9235–9247 (2008).
[Crossref]

Guo, Z.

H. Huang and Z. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25(4), 517–524 (2010).
[Crossref] [PubMed]

H. Huang and Z. Guo, “Human dermis separation via ultra-short pulsed laser plasma-mediated ablation,” J. Phys. D Appl. Phys. 42(16), 165204 (2009).
[Crossref]

Hannaford, P.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

He, J.

Heckl, O. H.

Ho, P. D.

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Horvath, C.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
[Crossref] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
[Crossref] [PubMed]

Huang, H.

H. Huang and Z. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25(4), 517–524 (2010).
[Crossref] [PubMed]

H. Huang and Z. Guo, “Human dermis separation via ultra-short pulsed laser plasma-mediated ablation,” J. Phys. D Appl. Phys. 42(16), 165204 (2009).
[Crossref]

Humbert, G.

Hussein, M. T.

R. K. Jamal, M. T. Hussein, and A. M. Suhail, “Three-Photon Absorption in Zno Film Using Ultra Short Pulse Laser,” J. Mod. Phys. 3(08), 856–864 (2012).
[Crossref]

Jamal, R. K.

R. K. Jamal, M. T. Hussein, and A. M. Suhail, “Three-Photon Absorption in Zno Film Using Ultra Short Pulse Laser,” J. Mod. Phys. 3(08), 856–864 (2012).
[Crossref]

Ji, W.

Juhasz, T.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kasenbacher, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Keller, U.

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kleinfeld, D.

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Kobler, J.

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
[Crossref] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[Crossref]

Krueger, R. R.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Kurtz, R. M.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Li, H.

Liaw, L. H.

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Loesel, F. H.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Lowe, R. M.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Luther-Davies, B.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Lyden, P. D.

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Marburger, J. H.

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Marcellino, G.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

McCullough, J. L.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Mi, J.

Mielke, M.

Mourou, G.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Neev, J.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Nelson, J. S.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Ngoi, B. K. A.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34(3), 199–202 (2002).
[Crossref]

Nickel, D.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Niemz, M. H.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Nishimura, N.

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Noack, F.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Palanker, D.

J. Wang, G. Schuele, and D. Palanker, “Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths,” J. Biomed. Opt. 20(12), 125004 (2015).
[Crossref] [PubMed]

Palanker, D. V.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Pawlowski, M.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

Peng, X.

Perry, M. D.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Piyawattanametha, W.

Qu, Y.

Ra, H.

Raney, D. V.

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Ratkay-Traub, I.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rode, A. V.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Rubenchik, A. M.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Saraceno, C. J.

Schaffer, C. B.

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Schriber, C.

Schuele, G.

J. Wang, G. Schuele, and D. Palanker, “Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths,” J. Biomed. Opt. 20(12), 125004 (2015).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Seibel, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Shadfan, A.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

Simoneau, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Slaughter, D. R.

K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
[Crossref] [PubMed]

Solgaard, O.

Strassl, M.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Stuart, B. C.

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

Subramanian, K.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

Südmeyer, T.

Suhail, A. M.

R. K. Jamal, M. T. Hussein, and A. M. Suhail, “Three-Photon Absorption in Zno Film Using Ultra Short Pulse Laser,” J. Mod. Phys. 3(08), 856–864 (2012).
[Crossref]

Suhm, N.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Talamo, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Tan, B.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34(3), 199–202 (2002).
[Crossref]

Taylor, B. T.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

Tkaczyk, T.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

Trant, M.

Tsai, P. S.

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Venkatakrishnan, K.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34(3), 199–202 (2002).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Wang, H. T.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 9235–9247 (2008).
[Crossref]

Wang, J.

J. Wang, G. Schuele, and D. Palanker, “Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths,” J. Biomed. Opt. 20(12), 125004 (2015).
[Crossref] [PubMed]

Wang, Y.

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

Wang, Y. Y.

Wheeland, R. G.

K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
[Crossref] [PubMed]

Wheeler, N. V.

White, W. E.

K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
[Crossref] [PubMed]

Wiltberger, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Wise, F. W.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[Crossref]

Woodley, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Yildirim, M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
[Crossref] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
[Crossref] [PubMed]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
[Crossref] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[Crossref]

Appl. Phys. B Lasers Opt. (1)

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B Lasers Opt. 66, 121–128 (1998).

Appl. Phys. Lett. (1)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[Crossref]

Arch. Dermatol. (1)

K. S. Frederickson, W. E. White, R. G. Wheeland, and D. R. Slaughter, “Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser,” Arch. Dermatol. 129(8), 989–993 (1993).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

J. Appl. Phys. (3)

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153 (2002).
[Crossref]

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 9235–9247 (2008).
[Crossref]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

J. Biomed. Opt. (3)

J. Wang, G. Schuele, and D. Palanker, “Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths,” J. Biomed. Opt. 20(12), 125004 (2015).
[Crossref] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt. 18(11), 118001 (2013).
[Crossref] [PubMed]

J. Mod. Phys. (1)

R. K. Jamal, M. T. Hussein, and A. M. Suhail, “Three-Photon Absorption in Zno Film Using Ultra Short Pulse Laser,” J. Mod. Phys. 3(08), 856–864 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

H. Huang and Z. Guo, “Human dermis separation via ultra-short pulsed laser plasma-mediated ablation,” J. Phys. D Appl. Phys. 42(16), 165204 (2009).
[Crossref]

J. Refract. Surg. (1)

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Lasers Med. Sci. (1)

H. Huang and Z. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25(4), 517–524 (2010).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

J. Neev, J. S. Nelson, M. Critelli, J. L. McCullough, E. Cheung, W. A. Carrasco, A. M. Rubenchik, L. B. Da Silva, M. D. Perry, and B. C. Stuart, “Ablation of human nail by pulsed lasers,” Lasers Surg. Med. 21(2), 186–192 (1997).
[Crossref] [PubMed]

J. Neev, L. H. Liaw, D. V. Raney, J. T. Fujishige, P. D. Ho, and M. W. Berns, “Selectivity, efficiency, and surface characteristics of hard dental tissues ablated with ArF pulsed excimer lasers,” Lasers Surg. Med. 11(6), 499–510 (1991).
[Crossref] [PubMed]

Nature Methods (1)

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nature Methods 3, 5–7 (2006).

Opt. Eng. (1)

A. Shadfan, M. Pawlowski, Y. Wang, K. Subramanian, I. Gabay, A. Ben-Yakar, and T. Tkaczyk, “Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery,” Opt. Eng. 55(2), 025107 (2016).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34(3), 199–202 (2002).
[Crossref]

Opt. Lett. (3)

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Sci. Transl. Med. (1)

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (3)

S. M. Zeitels, A. Ben-Yakar, C. L. Hoy, W. N. Everett, J. B. Kobler, R. R. Anderson, W. A. Farinelli, “Systems, devices and methods for imaging and surgery,” U.S. patent US2013/0211391 A1 (2013).

G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, 2005).

R. L. Sutherland, Handbook of Nonlinear Optics (1997), Vol. 36.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Opto-mechanical design of the endoscopic scalpel. (a) A cross sectional view of the scalpel’s design developed using Solidworks®, overlaid with optical design ray tracing generated in Zemax. The device focuses the laser onto the tissue surface (1) using a miniaturized objective piece made of a coverslip (2) and two ZnS lenses (3 & 4). The locus of the optic fiber tip (5) is mapped in Zemax to simulate the path of the rays from the focal plane back through the objective. A PMMA insert (6) holds the fiber within the inner cavity of a cylindrical piezo-electric actuator (7). The actuator is centered within an outer 304SS casing (8) using an accurately turned epoxy plug (9). The dashed red-line indicates fiber position at maximum deflection during scanning. (b) The broadband transmission spectra of the Kagome fiber and an SEM image (inset), showing its large, hypocycloid core geometry. (c) The normalized ablation plane shift from the theoretical focal plane, due to out-of-focus ablation and self-focusing for a range of operating fluences, at different NAs. The right axis of the plot shows the corresponding peak powers normalized with respect to the critical power for self-focusing in water. We performed the calculations for our design working distance of 900 μm. The NA of our final design is 0.23.
Fig. 2
Fig. 2 Optical characterization of the probe. (a) The optical setup used for probe characterization and ablation studies. The fiber laser is used for all ablation experiments, while the regenerative amplifier system is used to test the nonlinear characteristics of the ZnS lenses over a range of pulse widths. (b) An example plot of the measured lateral edge spread function and the Gaussian fit for determining the spot size at the focal plane through focusing in air. (c) Measured axial variation of spot size in air and corresponding estimates of lateral spot size and Rayleigh range from the curve fits.
Fig. 3
Fig. 3 Characterization of nonlinear absorption through the probe including miniaturized objective made of two ZnS lenses. (a) Measured transmission curves of 1-m Kagome fiber for 220 fs pulses and for the entire scalpel for 3 different pulse-widths. At the fiber laser's pulse-width of 1.5 ps, the objective exhibits linear operation up to ~1.4 μJ input pulse energies. (b) Linear fit to the logarithmic relationship between (1-Transmittance) versus input peak power for scalpel data presented in (a). The fit has a slope of two corresponding to a 3PA process according to Eq. (10). At powers below the 3PA threshold, only linear absorption is experienced. The device produces best results when operated in this linear range. At higher powers, saturation effects come into play for the 3PA process.
Fig. 4
Fig. 4 Characterization of the FOV and ablation across the FOV. (a) Experimentally obtained ablation patterns on gold thin film sample over different time windows using 0.75 J/cm2 pulses. Ablation spot sizes were larger at the center (region 2) and top (region 1) than the bottom of the FOV (region 3). The size of the measured FOV was 75 × 75 µm2. (b) Simulation for Lissajous scanning taking into account the probe x and y scanning frequencies shows a slowly evolving ablation pattern for a 1 kHz laser repetition rate. (c) The ZnS lens #2 fiber-side surface after NIR coating process showing peripheral damage. The quadrant that is most affected is demarcated with a red dashed line. (d) Experimental results for ablation of gold sample at 303 kHz repetition rate for different time windows. (e) Corresponding simulations of ablation pattern. Scale bars represent 20 μm.
Fig. 5
Fig. 5 Tissue surface ablation using the laser scalpel. (a) Images of 0.6 – 0.7 mm long ablation trenches in tissue using the scalpel. Numbers next to trenches represent translational speeds in mm/s. Scale bar represents 200 μm. (b) Simulation showing the effect of translational speed on ablation coverage. The sinusoidal overlapping pulse pattern produces uneven ablation at speeds less than 5 mm/s, due to the discrepancy between the number of pulses arriving at each spot. Higher speeds benefit from a more uniform distribution. (c) SHG microscopy images show signals from collagen structures and dark areas indicating 200 µm long, ~40 µm wide full depth trenches ablated by moving the samples back and forth at different translational speeds using fluence of 7.8 J/cm2. Scale bar represents 50 μm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

z sf = z sf f z + sf f ,
z sf = 0.367k a 2 { [ ( P P crit ) 1/2 0.852 ] 2 0.0219 } 1/2 .
P crit = 3.77 λ 2 8π n 0 n 2 .
f= d coll π d mf 4λ ,
dI dz =αIγ I 3 σ a N eh I,
T(z)= 1 ψ 0 ( z ) π ln{ 1+ ψ 0 2 ( z )exp(2 x 2 ) + ψ 0 ( z )exp( x 2 ) } dx,
ψ 0 ( z )= { γ I 0 2 1+ ( z/ z r ) 2 ( 1exp(2αL) α ) } 1/2 .
T(z)=1 γ I 0 2 L eff 3 3/2 { 1+ ( z/ z r ) 2 } 2 ,
T=1 γ P in 2 L eff 3 3/2 A 2 =1η P in 2 m,
D 2 =2 w 0 2 ln( F peak F th ),

Metrics